Satisfying
码龄5年
  • 484,193
    被访问
  • 276
    原创
  • 6,313
    排名
  • 3,012
    粉丝
关注
提问 私信

个人简介:#自律女孩养成记# #立刻行动派# 外表平静似水,内心坚定如刚。

  • 加入CSDN时间: 2017-10-11
博客简介:

诗小葵的博客

博客描述:
自律女孩养成记
查看详细资料
  • 5
    领奖
    总分 1,572 当月 270
个人成就
  • 获得267次点赞
  • 内容获得82次评论
  • 获得1,415次收藏
创作历程
  • 11篇
    2022年
  • 96篇
    2021年
  • 27篇
    2020年
  • 114篇
    2019年
  • 33篇
    2018年
  • 2篇
    2017年
成就勋章
TA的专栏
  • 信号处理
    19篇
  • 机器/深度学习
    17篇
  • 数学基础
    1篇
  • LeetCode
    99篇
  • 代码优化
    3篇
  • 工作中也要充电呀
    12篇
  • 数据库
    3篇
  • 数据分析
    7篇
  • 毫米波雷达
    2篇
  • 小记
    1篇
  • Golang基础知识
    2篇
  • Matlab
    28篇
  • 射频通信
    3篇
  • C/C++基础知识
    16篇
  • 计算机技术
    6篇
  • 笔经、面经集
    2篇
  • Python
    36篇
  • 编程实战(C/Python)
    2篇
  • 校招笔试
    19篇
  • 查漏补缺
    4篇
兴趣领域 设置
  • 人工智能
    数据挖掘
  • 数学
    傅立叶分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【20220420】【Matlab】错误使用 save,必须为字符串标量或字符串的解决办法~

1. 报错信息错误使用 save 必须为字符串标量或字符向量。clear; clc;a = 10;path = 'D:\';name = 'matData';path_name = fullfile(path, name);save(path_name, a);2. 报错原因Matlab 的 save 函数是通过字符串去寻找工作区中的变量。所以给 a 加上单引号即可~(参考:matlab 循环存储变量为.mat 以及save函数报错:错误使用 sav...
原创
发布博客 2022.04.20 ·
769 阅读 ·
1 点赞 ·
0 评论

【20220207】【信号处理】希尔伯特变换定义及解调原理

一、解析信号1. 定义解析信号是没有负频率分量的复值函数,解析信号的实部和虚部是由希尔伯特变换相关联的实值函数。 (参考:解析信号)2. 概念 一个实值函数的 Hilbert 变换记作为,则的解析信号为: 3. 性质(参考:希尔伯特变换简介) 解析信号有如下性质...
原创
发布博客 2022.02.08 ·
900 阅读 ·
3 点赞 ·
2 评论

【20220207】【信号处理】多种波峰、波谷检测算法原理介绍和优缺点比较

一、比较判别法波峰:f(x) > f(x-1) 且 f(x) > f(x+1);波谷:f(x) <f(x-1) 且 f(x) < f(x+1)。二、一阶差分结合比较判别法波峰: 一阶差分异号 且 f(x) > f(x-1);波谷: 一阶差分异号 且 f(x) < f(x-1)。三、二阶差分判别法 波峰: 一阶差分异号 且 二阶差分小于零;波...
原创
发布博客 2022.02.07 ·
962 阅读 ·
0 点赞 ·
0 评论

【20220207】【信号处理】三次样条插值原理详解

方程组的求解本文不做介绍。一、三次样条插值1. 定义三次样条插值(Cublic Spline Interpolation),简称 Spline 插值,是通过一系列样本点的光滑曲线,数学上通过求解三弯矩方程组得出曲线函数组。 (参考:三次样条插值)2. 解决什么问题?通过采集数据,通常有两种做法:拟合或差值。拟合不要求曲线通过所有的样本点,讲究神似,即整体趋势一致;插值讲究形似,即要求曲线穿过每个样本点。插值生成的高阶曲...
原创
发布博客 2022.02.07 ·
1393 阅读 ·
0 点赞 ·
0 评论

【20220124】【信号处理】ECG信号预处理及信号筛选方法

(参考:模式识别(ECG信号的处理与识别))一、ECG信号干扰来源人体的心电信号是一种非线性、非平稳、随机性强的微弱生理信号,在信号采集过程中心电信号极易受到仪器、人体活动、操作者以及周围环境等各方面因素的干扰而引入噪声。ECG(心电图)信号的主要噪声包括:基带漂移、肌电干扰、工频噪声、其他噪声干扰等。基线漂移是 ECG 信号的主要噪声之一,主要是由于病人呼吸。电极贴片滑动等所导致,频率一般低于 1Hz,其表现为变换缓慢的类正弦曲线,如下图:...
原创
发布博客 2022.01.24 ·
1340 阅读 ·
1 点赞 ·
0 评论

【20220122】【信号处理】能量谱和功率谱的区别

一、能量信号和功率信号1. 能量信号能量有限的信号为能量信号;2. 功率信号功率有限的信号为功率信号。 总之来说,所有周期信号都是功率信号,所有有限数量的脉冲信号都是能量信号。 (参考:能量信号和功率信号的分别)二、能量谱和功率谱1. 能量谱能量谱也叫能量谱密度,能量谱密度描述了信号或时间序列的能量如果随频率分布。能量谱是原信号 FFT 变换的平方。2. 功率谱功率谱也叫功率谱密度函数,简称...
原创
发布博客 2022.01.22 ·
808 阅读 ·
0 点赞 ·
0 评论

【20220118】【机器/深度学习】线性回归中的最小二乘法(LR)

一、什么是最小二乘法?最小二乘法是回归问题中的一种数学优化工具,它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便的求得位置的数据,使得求得的数据与真值之间误差的平方和最小。 (参考:最小二乘法) 最小二乘,广义来说就是机器学习中的平方损失函数:​​​​​​​​​​​​​​​​​​​​​​​​​​​​ ...
原创
发布博客 2022.01.18 ·
500 阅读 ·
0 点赞 ·
0 评论

【20220114】【信号处理】什么是基线漂移/趋势项?如何消除?

一、带你了解基线漂移1. 什么是基线漂移?一个特别低频的曲线叠加到了原始信号上,使得原始信号有缓慢的轻微的上下浮动的趋势。如下图: (参考:信号基线漂移是什么意思?) (参考:心电 基线漂移的处理研究论文)2. 基线漂移的危害? 如果不消除基线漂移/趋势项,那么会把趋势项当作真是采集的原始信号,会影响信号的准确性和后续的数据处理结果。 存在基线漂移时,在进行 FFT 分析、相关性分析和功率谱密度分...
原创
发布博客 2022.01.14 ·
4067 阅读 ·
5 点赞 ·
4 评论

【20220113】【Python】Python中使用matplotlib作图,如何设置不显示坐标值/坐标刻度?

1. 不显示坐标值plt.xticks([])plt.yticks([])2. 不显示坐标刻度plt.axis('off')3. 举个栗子~import matplotlib.pyplot as pltimport math# 生成信号fs = 1000f = 10t = list(range(0, 1000))t = [x/fs for x in t]a = [math.sin(2 * math.pi * f * x) for x in t]# 作图plt
原创
发布博客 2022.01.13 ·
2900 阅读 ·
1 点赞 ·
0 评论

【20220112】【信号处理】为什么要进行分窗?从Matlab仿真的角度对比常见几种窗函数的特性

一、为什么要进行分窗?1. 分窗的作用 信号进行 FFT 变换容易因为非周期截断造成频谱泄露,加窗可以更好地满足 FFT 处理的周期性要求,减少频谱泄露。频谱泄露详解见:【20211228】【信号处理】从 Matlab 仿真角度理解频谱泄露(参考:数字信号预处理--加窗的重要性) (参考:为什么要对信号加窗) (参考:【信号处理】基础知识——加窗windowing) (参考:窗函数作用和性质)2. 分窗使用范...
原创
发布博客 2022.01.12 ·
667 阅读 ·
2 点赞 ·
0 评论

【20220108】【毫米波雷达】毫米波雷达(二)—— 毫米波雷达和激光雷达的区别及优缺点比较

一、激光雷达二、毫米波雷达 毫米波雷达工作在毫米波波段,通常工作频率为 30~300GHz,波长为 1~10mm。三、优缺点比较
原创
发布博客 2022.01.08 ·
2652 阅读 ·
0 点赞 ·
0 评论

【20211229】【信号处理】傅里叶变换 FFT 的点数 N 如何选取?

一、FFT 点数 N 选择不合理有什么影响?1. N 过小 栅栏效应,即频域频率分辨率不够,无法区分出某些频率成分。详见:【20211217】【信号处理】从 Matlab 仿真角度理解栅栏效应2. N 过大(1)增加了额外的计算量;(2)频谱不对。二、如何选取 FFT 点数 N?取决于要求的频率分辨率 F。频率分辨率 F 的定义:能够用 FFT 算法分析得到的最靠近的两个信号频率的频率间隔。...
原创
发布博客 2021.12.29 ·
1868 阅读 ·
2 点赞 ·
0 评论

【20211228】【信号处理】一文读懂信号处理中频谱混叠、栅栏效应、频谱泄露的产生原因和解决方法

1. 频谱混叠产生原因:采样频率不满足奈奎斯特采样定理,即采样频率过低,不满足采样频率高于信号最高频率的两倍的条件。解决方法: (1)增加时域采样点数,即提高采样频率; (2)或者在采样之前加一个抗混叠低通滤波器(把信号中超过 fs/2 的频率成分过滤掉)。详见:【20211214】【信号处理】从Matlab仿真的角度理解频谱混叠和奈奎斯特采样定理2. 栅栏效应产生原因:频谱的频率分辨率不...
原创
发布博客 2021.12.28 ·
2665 阅读 ·
1 点赞 ·
0 评论

【20211228】【信号处理】从 Matlab 仿真角度理解频谱泄露

一、频谱泄露1. 定义 频谱泄露会导致主谱线旁边有很多旁瓣,这会造成谱线间的干扰,严重的可能是旁瓣能量强到分不清哪个是主瓣,这就是所谓的谱间干扰。 (参考:FFT造成的频谱混叠,栅栏效应,频谱泄露,谱间干扰)2. 产生原因 信号被非周期截断,导致延拓信号和原信号的相位不连续,那么做 FFT 变换,得到的频谱就会发生频谱泄露。所以发生频谱泄露的原因是:信号被非周期截断/加窗。 如下图:图 1 的第 1 个子图是信号被周期截断,第 ...
原创
发布博客 2021.12.28 ·
972 阅读 ·
1 点赞 ·
0 评论

【20211217】【信号处理】从 Matlab 仿真角度理解栅栏效应

一、定义栅栏效应是指离散傅里叶变换(DFT)计算的频谱被限制在基频的整数倍处,只能在相应的离散点处看到输出,而丢失了其他频率成分的信息的现象。(就好像透过一道栅栏看风景,只能看到透过栅栏缝隙的景色一样~) (参考:栅栏效应 (数字信号处理术语))二、产生原因 栅栏效应的本质就是频率分辨率不够,导致部分频率信息丢失,而丢失的这些频率信息很有可能就是重要的或具有重要特征的成分,所以可能会对信号处理的结果产生很大的影响。 (参考:...
原创
发布博客 2021.12.17 ·
1172 阅读 ·
1 点赞 ·
0 评论

【20211214】【信号处理】从Matlab仿真的角度理解频谱混叠和奈奎斯特采样定理

采样频率: fs = 100Hz 信号频率:f1=40Hz,f2=60.05Hz一、奈奎斯特采样定理二、栅栏效应三、频谱泄露四、FFT点数选取
原创
发布博客 2021.12.16 ·
1552 阅读 ·
3 点赞 ·
0 评论

【20211214】【信号处理】使用Matlab求解信号的频谱图、幅度谱、相位谱

clear; clc; close all; warning off;fs = 1000;t = 0 : 1/fs : 10;datalength = length(t);s1 = 10 * sin(2 * pi * 50 * t); % 信号1s2 = 3 * sin(2 * pi * 100 * t); % 信号2s3 = 15 * cos(2 * pi * 30 * t); % 信号3s4 = 1 * randn(1, datalength); % 信号4(高斯白噪声)s .
原创
发布博客 2021.12.14 ·
6356 阅读 ·
7 点赞 ·
0 评论

【20211214】【Python】查找数组中最值元素、中值元素及其索引

一、最大值1. 最大值元素 np.max(lis)2. 最大值索引 np.argmax(lis) 或 np.where(lis==np.max(lis))二、最小值1. 最小值元素np.min(lis)2. 最小值索引np.argmin(lis) 或 np.where(lis==np.min(lis))三、中值1. 中值元素np.median(lis)2. 中值索引 ...
原创
发布博客 2021.12.14 ·
970 阅读 ·
0 点赞 ·
0 评论

【20211208】【Matlab】使用Matlab中的pca函数实现数据降维,并将数据可视化

1. pca函数使用方法 [coeff, score] = pca(data);(1)输入参数data:待降维的数据集(2)输出参数 coeff:主成分分量,即样本协方差矩阵的特征向量; score:主成分,即样本在低维空间的投影,也就是降维后的数据。注意:score 的维度和原始样本 data 的维度一致,如果想要降到 k 维,只需选取 score 的前 k 列即可~%%clear; clc; close all...
原创
发布博客 2021.12.08 ·
2240 阅读 ·
2 点赞 ·
8 评论

【20211208】【Matlab】使用Matlab中setdiff生成两个数组的差集

1. C = setdiff(A, B)功能:返回 A 中存在但 B 中不存在的数据,不包含重复项。 (参考:setdiff)
原创
发布博客 2021.12.08 ·
104 阅读 ·
0 点赞 ·
0 评论
加载更多