自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

枪枪枪的博客

见贤思齐焉,见不贤而内自省也。 君子生非异也,善假于物也。君子博学而日参省乎己,则知明而行无过矣。

  • 博客(205)
  • 资源 (1)
  • 论坛 (1)

原创 阅读源码-理解pytorch_pretrained_bert中BertTokenizer工作方式

tokenization.pyload_vocab(vocab_file)def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with open(vocab_file, "r", encoding="utf-8") as reader: while True:

2020-10-22 13:35:26 31

原创 python 动态生成变量并调用

python locals()函数当一个函数中需要的参数、变量个数不确定时,需要根据需求动态的生成变量并赋予响应的值,这时可以用到locals()这个函数locals以字典的形式返回当前函数运行环境下的全部变量字典的key是变量名字典的value是变量的值通过对这个字典增加新的key、value即可产生新的变量,调用时用变量的名取这个字典中取变量的值或根据某个值得到变量名例子:dynamic_variable = locals()for i in range(0,4): dynam

2020-10-20 17:37:54 14

原创 BERT 中的tokenizer和wordpiece和bpe(byte pair encoding)分词算法

文章目录一、BERT 中的tokenizer和wordpiece和bpe(byte pair encoding)分词算法1.1 tokenizer 分词器wordpiece(暂且称为 词块)对于英文词语对于中文1.2 谷歌中文预训练语言模型,vocab.txt词包(词典)1.3 bpe(byte pair encoding,字节对编码)分词算法资料理解bpebpe分词算法的原理以及在机器翻译中的应用机器翻译 bpe——bytes-pair-encoding以及开源项目subword-nmt快速入门理解tok

2020-09-28 22:04:30 109

原创 python re.sub替换不全的原因分析

re.sub函数的定义def sub(pattern, repl, string, count=0, flags=0): """Return the string obtained by replacing the leftmost non-overlapping occurrences of the pattern in string by the replacement repl. repl can be either a string or a callable;

2020-09-19 14:56:24 11

原创 CentOS7虚拟机不能联网、不能远程,虚拟机能ping通主机,主机ping不通虚拟机的终极解决方法

之前一直好好的,都可以联通,ping来ping去都没问题,远程也可以连。但就是突然,什么都不好使了,ping也ping不通,dhcp、static换来换去都不行,重启网络服务也不好使,甚至最终重启都不行,提示重启失败。瞬间有想删虚拟机的想法,但是想了想还是直面困难,解决它吧!最终肯定要是达到静态IP,能上网能远程的目的的VMware需要设置的地方子网IP需要和主机IP不在同一网段,例如我这里主网ip是192.168.1.XXX注意这个网关地址,在配置虚拟机网卡时需要用到如果遇到重启网卡失败的现

2020-09-18 00:10:01 71

原创 逻辑回归:Cost function

J(θ)=−1m∑i=1m[y(i)log⁡h(x(i),θ)+(1−y(i))log⁡(1−h(x(i),θ))]J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log{h(x^{(i)},\theta)}+(1-y^{(i)})\log{(1-h(x^{(i)},\theta))}]J(θ)=−m1​i=1∑m​[y(i)logh(x(i),θ)+(1−y(i))log(1−h(x(i),θ))]这个方程分为几个部分后理解起来会很容易−1m-\frac{

2020-08-09 14:31:23 65

原创 [UNIX环境高级编程]阅读第十三章 守护进程

1 简单了解守护进程(daemon)是生存期长的一种进程。常常在系统引导装入时启动,仅在系统关闭时才终止。因为守护进程没有控制终端,所以说它们是在后台运行的。UNIX系统有很多守护进程,它们执行日常事务活动。2.守护进程的特征ps -ajx选项-a显示由其他用户所拥有的进程的状态,-x显示没有控制终端的进程状态,-j显示与作业有关的信息:会话ID、进程组ID、控制终端以及终端进程组ID。UID:用户ID、进程ID、父进程ID、进程组ID、会话ID、终端名称以及命令字符串。# ps -a

2020-07-25 19:24:21 39

原创 python 去除字符列表内为空的元素(None,False,‘‘,等)

参考资料:廖雪峰官方网站” python 中 高阶函数 filter 的使用python – 优雅地删除字符列表中的空字符及None元素在参考资料2中有很好的过程分析,建议看一下。content=['a','',None,False,'','b','c']y=list(filter(lambda s: s and s.strip(),content))print(y)['a', 'b', 'c']Python内建的filter()函数用于过滤序列。和map()类似,filter

2020-07-21 16:21:53 330

原创 win10 配置cuda、cudnn、tensorflow、pytorch过程记录

文章目录资料1.安装cuda2. 安装cudnn资料windows下cuda的安装https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html1.安装cuda谷歌搜索:cuda 10.2.141 driverhttps://developer.nvidia.com/cuda-10.2-download-archive?target_os=Windows&target_arch=x86_64&target_v

2020-07-20 19:49:50 314

原创 简单几步,给你一个干净的浏览器页面(CSDN博客)。(消灭广告!(让广告从你的眼前消失~ ~))

  只需要安装一个简单的插件Adblock Plus即可。这是一个浏览器上的一个扩展插件,适用于各种各样的浏览器~ ~。Adblock Plus会阻挡:  · 横幅  · YouTube 视频广告  · Facebook 广告  · 弹出窗口  · 所有其他显眼的广告而且还可以定义自己的拦截规则,点击红色方框内的按钮后,鼠标移动到想要屏蔽的元素上单击一下左键,以后这个元素就不会在...

2020-07-13 23:27:10 1251

原创 [笔记] 操作系统概念 第十章

10.1 文件概念文件:操作系统对存储设备的物理属性加以抽象,从而定义逻辑存储单位。文件由操作系统映射到物理设备上。文件表示程序(源形式和目标形式)和数据。文件为位、字节、行或记录的序列,其含义由文件的创建者和用户定义。10.1.1 文件属性10.1.2 文件操作操作系统有一个打开文件表(open-file table)以用于维护所有打开文件的信息。系统调用open()通常返回一个...

2020-07-13 23:25:48 41

原创 Pandas使用记录
原力计划

文章目录pandas.DataFramedtype参数apply函数多列计算loc函数round函数pandas.DataFrameParametersdatandarray (structured or homogeneous), Iterable, dict, or DataFrameDict can contain Series, arrays, constants, or list-like objects.Changed in version 0.23.0: If data is a

2020-07-13 23:17:44 117

原创 对ps -axj | grep python中 | 作用的理解

在命令中的|是管道文件的意思命令A | B,将命令A的结果通过管道文件传输给命令Bps -axj | grep pythonps是查看进程命令grep是字符串查询命令这里就是将ps -axj的结果通过管道文件给grep命令,grep命令在其中查找和python有关的字段并输出。...

2020-07-08 17:33:01 103

原创 Linux(CentOS 7)服务器增加固态硬盘作为系统盘
原力计划

文章目录可能用到的命令1. fdisk -l查看分区(partition)表2. umount -l绝大多数情况下一定会有效的卸载分区方式3. fdisk <分区名称>修改分区表通知内核更新分区表。4. fsck和e2fsck5. fdisk和lsblk6.格式化分区 mkfs、mkfs.ext3、mke2fs7.mount A B 将分区A挂载到位置B8.设置开机自动挂载:vi /etc/fstab在实际操作前先做一下理论上的准备可能用到的命令1. fdisk -l查看分区(partit

2020-07-08 16:39:24 504

原创 生产环境下,Linux(CentOS 7)磁盘空间扩容(数据盘)
原力计划

文章目录前言过程阶段一第一步:创建快照第二步:扩容阶段二第一步:查看服务器相关信息1.确认分区表格式和文件系统2.选择扩容分区或文件系统的方式3.根据分区类型,这里进行扩展MBR分区第二步 新增MBR分区前言这次进行的是数据盘空间扩容这次操作在官方文档的基础上,结合一些案例进行一、官方的文档扩展分区和文件系统_Linux数据盘_扩容云盘_云盘_块存储_云服务器 ECS-阿里云阿里云 ECS 云盘扩容操作指南(图文详解) - 独特优惠码二、案例:【实操】云服务器ECS扩充磁盘、磁

2020-07-06 20:53:54 152

原创 51Job行业分类和行业编号汇总,格式:Json

[{"industry_category_name": "计算机/互联网/通信/电子", "industry_category_code": "01", "industry_name": "计算机软件", "industry_code": "01"}, {"industry_category_name": "计算机/互联网/通信/电子", "industry_category_code": "01", "industry_name": "计算机硬件", "industry_code": "37"}, {"i

2020-06-27 20:18:38 203

原创 Docker快速入门与使用
原力计划

文章目录一、基础知识1.Docker的应用场景2.Docker 优点3. Docker架构一、基础知识Docker可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。1.Docker的应用场景1.Web应用的自动化打包和发布2.自动化测试和持续集成、发布3.在服务型环境中部署和调整数据库或其它的后台应用。4.从头编译或者扩展现有的OpenShift或Cloud Foundry平台来搭建自己的PaaS环境。2.Docker

2020-06-25 15:50:33 302

原创 Python re 使用记录

文章目录规则注意常用表达式规则元字符匹配内容.匹配除换行符以外的任意字符\w匹配字母、数字、下划线\s匹配任意的空白符,相当于[\n\t\r\f]\S匹配非空字符\d匹配数字\D匹配非数字\A匹配字符串开头\Z匹配字符串结尾,如果存在换行,同时还会匹配换行符\n匹配一个换行符\t匹配一个制表符\b匹配一个单词的结尾^匹配字符串的开始$匹配字符串的结尾\W匹配非字母或数字或下划线

2020-06-11 13:49:13 115

原创 Splash使用记录

文章目录一、介绍二、知识点1. Lua脚本1.1 介绍1.2 使用2. Splash API2.1 介绍2.2 使用1.render.html2.render.png3.execute一、介绍1.提供JavaScript渲染服务2.带有HTTP API的轻量级浏览器3.对接了Python中的Twisted和QT库Splash文档:传送门二、知识点1. Lua脚本1.1 介绍Lua 是一种轻量小巧的脚本语言,用标准C语言编写并以源代码形式开放, 其设计目的是为了嵌入应用程序中,从而为应用程序

2020-06-06 16:34:10 66

原创 Scrapy快速入门与使用
原力计划

文章目录一、基本应用二、知识点1.理解Downloader Middleware三、实用技巧1.定制user-agent方法1方法2 (推荐)一、基本应用(PS:图片取自百度搜图,图片上的水印有些糊,看不清来源了.)要了解Scrapy框架,从这个图出发,理解很轻松.1.新建scrapy项目: scrapy startproject [项目名]2.在项目内新建Spider(这里定义了爬取的逻辑和解析网页的规则)scrapy genspider [Spider名称] [要爬取的域名]二、知

2020-05-30 22:33:15 89 1

原创 Flask 新闻网站搜索功能的实现(笔记)
原力计划

文章目录思路实现第一步:在前端页面上定制搜索框第二步 编写视图函数参考资料思路1.在前端页面向服务器提交数据,这里使用post方法2.服务器端view层接受到数据,在通过model层从数据库中查找数据并返回3.将查询到的数据通过view层渲染到templates中进行显示实现第一步:在前端页面上定制搜索框定制过程中使用了bootstrap框架{# 搜索框设置 #} <div class="search-design" > <form method="post"

2020-05-23 13:54:53 197

原创 在Linux(CentOS7)中使用Fabric自动部署Django项目

项目的目录结构PythonTDD├── database│ └── db.sqlite3├── requirements.txt├── static│ ├── admin│ │ ├── css│ │ ├── fonts│ │ ├── img│ │ └── js│ ├── base.css│ └── bootstrap│ ├── css│ └── js└── superlists ├── deploy

2020-05-13 22:01:20 97

原创 使用Systemd确保引导时启动Gunicorn

记录下这次实践,避免以后遗忘确保服务器引导时自动启动Gunicorn,如果Gunicorn崩溃则自动重启#gunicorn可执行文件所在位置/root/venv/pythonTDD-env/bin/gunicorn#Systemd脚本保存位置,所写的脚本要以.service结尾/etc/systemd/system/编写脚本:pythonTDD.service[Unit]Description=Gunicorn server for pythonTDD[Service]Resta

2020-05-13 09:57:00 193

原创 Django项目使用Nginx伺服静态文件

项目的目录结构PythonTDD ├── database │ ├── db.sqlite3 │ └── .gitkeep ├── .gitignore ├── .idea ├── requirements.txt ├── static │ ├── admin │ │ ├── css │ │ ├── fonts │ │ ├── img │ │ └── js │

2020-05-13 07:55:38 64

原创 !!!换了一个新的Linux系统,又得重新配置一下环境,在此记录一下。整一个总结,避免以后重复工作时找不到记录。

信息Linux系统:CentOS 7远程终端:MobaXterm(PS:这个真的超好用,免费版的功能就很强大,足够应付日常使用)要配置的环境Python 3.7(挑主流的)Git(挑稳定版中最新的)Nginx(挑稳定版中最新的)SQLite配置SQLite1.下载传送门.下载这个自动配置的版本,安装简便。将安装包放到你的Linux系统中2解压:[root@bogon ...

2020-05-04 22:21:41 233

原创 手动部署项目:pip导出项目依赖包到指定文件

(venv) D:\programming\python\PythonTDD>pip freeze > requirements.txt从 requirements.txt文件安装项目依赖包pip install -r 项目目录/requirements.txt

2020-05-03 14:51:35 91

原创 CentOS7 配置virtualenv和VirtualenvWrapper

首先注意:最新版本的virtualenv有BUG,无法识别–no-site-packages参数virtualenv: error: unrecognized arguments: --no-site-packages解决方法:降低版本python.exe -m pip install --upgrade virtualenv==16.7.9详情请看:https://github.com...

2020-05-03 14:44:01 809

原创 Git:假如你已经有了一个本地仓库,该如何将其上传到远程仓库中

详情学过的知识一段时间不用就容易忘记,在此记录一下过程!#新建远程仓库配置远程仓库git remote add origin [远程仓库地址]上传如果远程仓库为空,执行:git push -u origin master将本地master分支上传即可如果远程仓库不为空,执行:git pull --rebase origin master将远程仓库和本地master分支合并,然后...

2020-05-03 13:58:04 67

原创 获取linkedin上指定公司下的职员信息

前言看到了一个很有意思的爬虫思路,在这里实践一下。爬取过程中控制请求的频率,仅获取少量数据用以验证程序逻辑是否合理参考资料博文链接:https://blog.csdn.net/bone_ace/article/details/71055153github链接:https://github.com/LiuXingMing/LinkedinSpider思路我这里使用的是原作者的思路三...

2020-05-02 12:24:28 899 1

转载 Tomcat输出控制台中文乱码的解决方法

问题原因这个问题的原因是windows默认编码集为GBK,由于使用startup.bat启动tomcat时,它会读取catalina.bat的代码并打开一个新窗口运行。打开的cmd默认编码可能不是utf-8,与系统编码不一致,所以导致乱码。所以tomcat的命令框和输出日志都是乱码修改logging.properties配置a.打开tomcat/conf/logging.properties...

2020-03-31 20:28:57 257

原创 [Python Web]使用pip freeze > [目标文件件地址]快速生成项目组件配置信息

2019年12月25日09点20分

2019-12-25 09:21:41 199

原创 Win10 更新1909后,内存占用过高(16G占了12G,80%左右)

打开,任务管理器,发现无异常进程。系统占用内存过高。运行Windows 内存诊断,未检测到问题,但是检测完毕重启后,问题得到解决。

2019-11-18 13:07:35 5483 2

原创 KMP算法求取部分匹配值的方法

复习过程中看到的一个简洁明了的求取部分匹配值的方法,比看图要好理解。字串结构上的几个概念:前缀:指除最后一个字符外,字符串的所有头部字串。后缀:指除第一个字符外,字符串的所有尾部子串。部分匹配值:为字符串的前缀和后缀的最长相等前后缀长度。以′ababa′'ababa'′ababa′为例:′a′的前缀和后缀都为∅,最长相等前后缀长度为0'a'的前缀和后缀都为\varnothing,最长相...

2019-11-09 21:21:24 931

原创 函数u=(x,y,z)在点P处延方向向量n的方向导数的计算

方向向量n⃗,点P(x,y,z)方向导数=∂u∂n⃗=∂u∂xcos α+∂u∂ycos β+∂u∂zcos γ  cos α=x∣n⃗∣cos β=y∣n⃗∣cos γ=z∣n⃗∣  ∣n⃗∣=x2+y2+z2方向向量\vec{n},点P(x,y,z)\\ 方向导数=\frac{\partial{u}}{\partial\vec{n}}=\frac{\partial{u}}{\partial{x...

2019-10-29 20:07:43 1034

原创 空间曲线的质心、形心计算方法

1、质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点;重心是在重力场中,物体处于任何方位时所有各组成支点的重力的合力都通过的那一点。规则而密度均匀物体的重心就是它的几何中心;面的形心就是截面图形的几何中心。2、质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。3、一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才...

2019-10-26 11:18:32 4258

原创 二阶常系数齐次线性微分方程通解的求取

(光看一遍书很快就又忘了,在此记录一下)y′′+py′+qy=0y''+py'+qy=0y′′+py′+qy=0第一步:写出微分方程的特征方程r2+pr+q=0r^2+pr+q=0r2+pr+q=0第二步:求出特征方程的两个根r1,r2r_1,r_2r1​,r2​第三步:根据特征方程的两个根的不同情形,按照下列表格写出微分方程的通解:特征方程r2+pr+q=0r^2+pr+q=...

2019-10-25 16:07:12 877

原创 曲线渐近线的求取

首先,判断是否存在水平渐近线当x→∞时,y→A(A∈R),说明存在水平渐近线当x\to\infty时,y\to A(A\in R),说明存在水平渐近线当x→∞时,y→A(A∈R),说明存在水平渐近线若不存在水平渐近线,再判断是否存在铅直渐近线当x→A(A∈R)时,y→∞,说明存在铅直渐近线当x\to A(A\in R)时,y\to\infty,说明存在铅直渐近线当x→A(A∈R)时,y→∞,...

2019-10-24 08:49:11 623

原创 概率密度函数

定义设XXX为一随机变量,若存在非负实函数f(x)f(x)f(x),使对任意实数a<ba<ba<b,有P{a≤x<b}=∫abf(x)dxP\{a\le x<b\}=\int_a^bf(x)dxP{a≤x<b}=∫ab​f(x)dx则称XXX为连续性随机变量,f(x)f(x)f(x)称为XXX的概率密度函数,简称概率密度或密度函数P{x1≤X<x...

2019-10-23 16:26:27 91

原创 二阶常系数非齐次线性微分方程的特征方程的选取技巧

二阶常系数非齐次线性微分方程y′′+py′+qy=Pm(x)eλxy^{''}+py^{'}+qy=P_m(x)e^{\lambda x}y′′+py′+qy=Pm​(x)eλx有形如y∗=xkQm(x)eλxy*=x^kQ_m(x)e^{\lambda x}y∗=xkQm​(x)eλx的特解,其中Qm(x)Qm(x)Qm(x)是与Pm(x)Pm(x)Pm(x)同次的多项式, 而k按λ\l...

2019-10-22 20:25:21 1950 2

原创 [数据结构] 复习记录

1 绪论

2019-10-20 23:00:48 47

操作系统概念第9版 源码

书本上实例的源码。 The ninth edition of Operating System Concepts continues to evolve to provide a solid theoretical foundation for understanding operating systems. This edition has been updated with more extensive coverage of the most current topics and applications, improved conceptual coverage and additional content to bridge the gap between concepts and actual implementations. A new design allows for easier navigation and enhances reader motivation. Additional end-of-chapter, exercises, review questions, and programming exercises help to further reinforce important concepts. WileyPLUS, including a test bank, self-check exercises, and a student solutions manual, is also part of the comprehensive support package.

2018-12-11

请教一下,机器学习相关的书籍。

发表于 2019-04-21 最后回复 2019-10-29

空空如也
提示
确定要删除当前文章?
取消 删除