山峰与山谷 题解

这是一篇关于如何使用BFS算法求解网格地图中山峰和山谷数量的题解。文章详细分析了题意,阐述了利用BFS进行联通块搜索的实现细节,并提到了针对题目限制的处理策略。同时,文中还分享了防止BFS超时的优化技巧。
摘要由CSDN通过智能技术生成

山峰与山谷

给定一个n∗n的网格状地图,每个方格(i,j) 有一个高度w[i] 。如果两个方格有公共顶点,则它们是相邻的。

定义山峰和山谷如下:

均由地图上的一个连通块组成; 所有方格高度都相同; 周围的方格(即不属于山峰或山谷但与山峰或山谷相邻的格子)高度均大于山谷的高度,或小于山峰的高度。 求地图内山峰和山谷的数量。特别地,如果整个地图方格的高度均相同,则整个地图既是一个山谷,也是一个山峰。

此题细节比较多,发此题解纪念一下。

题意

求两种联通块的数量。其中:

第一种 周围的不属于该联通块的方格均大于该方格

第二种 周围的不属于该联通块的方格均小于该方格

分析

题目是一张图,因此我们很容易想到DFS或BFS求联通块。

注:本题解采用BFS

主要目的 向四周寻找属于联通块的方格,每一个方格都要照顾到。

实现细节

本题目中方格的8个方向都可以成为待选的联通块。

所以我们定义八个方向的预处理数组:

int d[][2]{0,1,0,-1,1,0,-1,0,1,-1,-1,-1,-1,1,1,1};

等同于

int dx[8]={0,0,1,-
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值