山峰和山谷
FGD小朋友特别喜欢爬山,在爬山的时候他就在研究山峰和山谷。
为了能够对旅程有一个安排,他想知道山峰和山谷的数量。
给定一个地图,为FGD想要旅行的区域,地图被分为 n×n 的网格,每个格子 (i,j) 的高度 w(i,j) 是给定的。
若两个格子有公共顶点,那么它们就是相邻的格子,如与 (i,j) 相邻的格子有(i−1,j−1),(i−1,j),(i−1,j+1),(i,j−1),(i,j+1),(i+1,j−1),(i+1,j),(i+1,j+1)。
我们定义一个格子的集合 S 为山峰(山谷)当且仅当:
S 的所有格子都有相同的高度。
S 的所有格子都连通。
对于 s 属于 S,与 s 相邻的 s′ 不属于 S,都有 ws>ws′(山峰),或者 ws<ws′(山谷)。
如果周围不存在相邻区域,则同时将其视为山峰和山谷。
你的任务是,对于给定的地图,求出山峰和山谷的数量,如果所有格子都有相同的高度,那么整个地图即是山峰,又是山谷。
输入格式
第一行包含一个正整数 n,表示地图的大小。
接下来一个 n×n 的矩阵,表示地图上每个格子的高度 w。
输出格式
共一行,包含两个整数,表示山峰和山谷的数量。
数据范围
1≤n≤1000,1≤n≤1000,1≤n≤1000,
0≤w≤1090≤w≤10^90≤w≤109
输入样例1:
5
8 8 8 7 7
7 7 8 8 7
7 7 7 7 7
7 8 8 7 8
7 8 8 8 8
输出样例1:
2 1
输入样例2:
5
5 7 8 3 1
5 5 7 6 6
6 6 6 2 8
5 7 2 5 8
7 1 0 1 7
输出样例2:
3 3
暴搜遍历一下边界就可以了。
#include<bits/stdc++.h>
using namespace std;
int n,ma[1005][1005],vis[1005][1005],h,l;
queue<pair<int,int> >q;
void bfs(int x,int y,int &h,int &l)
{
while(!q.empty()) q.pop();
vis[x][y]=1;
q.push({x,y});
while(!q.empty()){
pair<int,int> u=q.front(); q.pop();
for(int i=u.first-1;i<=u.first+1;i++){
for(int j=u.second-1;j<=u.second+1;j++){
if(i<=0||i>n||j<=0||j>n) continue;
if(ma[i][j]!=ma[u.first][u.second]){
if(ma[i][j]>ma[u.first][u.second]) h=1;
else l=1;
}else{
if(!vis[i][j]){
q.push({i,j});
vis[i][j]=1;
}
}
}
}
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>ma[i][j];
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(!vis[i][j]){
int is_h=0,is_l=0;
bfs(i,j,is_h,is_l);
if(!is_h) h++;
if(!is_l) l++;
}
}
}
cout<<h<<' '<<l<<endl;
}
这篇博客介绍了如何使用Flood Fill算法来确定地图上的山峰和山谷数量。通过分析地图上相邻格子的高度关系,定义了山峰和山谷的条件,并提供了输入输出示例来解释算法的应用。对于给定的地图,任务是计算山峰和山谷的计数,当所有格子高度相等时,地图同时被视为山峰和山谷。
900

被折叠的 条评论
为什么被折叠?



