1175. 质数排列

1175. 质数排列

难度简单68收藏分享切换为英文接收动态反馈

请你帮忙给从 1n 的数设计排列方案,使得所有的「质数」都应该被放在「质数索引」(索引从 1 开始)上;你需要返回可能的方案总数。

让我们一起来回顾一下「质数」:质数一定是大于 1 的,并且不能用两个小于它的正整数的乘积来表示。

由于答案可能会很大,所以请你返回答案 模 mod 10^9 + 7 之后的结果即可。

示例 1:

输入:n = 5
输出:12
解释:举个例子,[1,2,5,4,3] 是一个有效的排列,但 [5,2,3,4,1] 不是,因为在第二种情况里质数 5 被错误地放在索引为 1 的位置上。

示例 2:

输入:n = 100
输出:682289015
class Solution {
    //两个全排列相乘
    static final int MOD = 1000000007;

    public int numPrimeArrangements(int n) {
        int numPrimes = 0;
        for (int i = 1; i <= n; i++) {
            if (isPrime(i)) {
                numPrimes++;
            }
        }
        return (int) (factorial(numPrimes) * factorial(n - numPrimes) % MOD);
    }

    public boolean isPrime(int n) {
        if (n == 1) {
            return false;
        }
        for (int i = 2; i * i <= n; i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }

    public long factorial(int n) {
        long res = 1;
        for (int i = 1; i <= n; i++) {
            res *= i;
            res %= MOD;
        }
        return res;
    }
}

i++ 即后加加,原理是:先自增,然后返回自增之前的值

++i 即前加加,原理是:先自增,然后返回自增之后的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想去拉萨。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值