Leetcode 1175. 质数排列

Leetcode 1175. 质数排列

题目

请你帮忙给从 1 到 n 的数设计排列方案,使得所有的「质数」都应该被放在「质数索引」(索引从 1 开始)上;你需要返回可能的方案总数。

让我们一起来回顾一下「质数」:质数一定是大于 1 的,并且不能用两个小于它的正整数的乘积来表示。

由于答案可能会很大,所以请你返回答案 模 mod 10^9 + 7 之后的结果即可。

示例 1:

输入:n = 5
输出:12
解释:举个例子,[1,2,5,4,3] 是一个有效的排列,但 [5,2,3,4,1] 不是,因为在第二种情况里质数 5 被错误地放在索引为 1 的位置上。

示例 2:

输入:n = 100
输出:682289015

思路

  • 由于题目中给定n<=100, 所以可以直接打出质数表
  • 这就是一道排列的问题, 让几个质数在质数的位置上任意地排列,从数学的角度来说,就是质数有a个, 非质数有b个, 且a + b == n, 则最后的答案就是a! * b! % (1e9 + 7)

代码 —— golang

func CalculateFact(n int) int {
	res := 1

	for i := 1;i <= n;i++ {
		res = res * i % (1e9 + 7)
	}

	return res
}

func numPrimeArrangements(n int) int {
	primers := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
					41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}
	cnt := 0

	for _, data := range primers {
		if data <= n {
			cnt++
		} else {
			break
		}
	}

	return CalculateFact(cnt) * CalculateFact(n - cnt) % (1e9 + 7)
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值