generator 2
题意
给出\(x_0,a,b,p\),有方程\(x_i\equiv (a*x_{i-1}+b)(\% p)\),求最小的i,使得\(x_i=v\),不存在输出-1
分析
经过公式运算可以知道,当a!=1时,由等比数列求和我们可以知道,\(v=x_n=x_0*a^n+b*\frac{a^n-1}{a-1}\),化简得\(a^n\equiv \frac{(a-1)v+b}{(a-1)x0+b} (\% p)\) 这样就转化成了bsgs的形式,直接套用bsgs即可。这里需要注意的是,因为由q次询问,bsgs需要预处理没有询问参数v的一端,然后再在询问询问里面查找另外一段,这里考察的是活用bsgs,因为这和平常的bsgs是相反的,其次需要知道的是,使用unordered_map可以卡过去,但是稳一点还是手写hash
注意要特判左边算出来是1的情况
a=0和a=1也需要特判
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+3;
namespace Hash{
const int maxn=1e6+3;
int cnt,head[maxn],nxt[maxn];
ll val[maxn],pos[maxn];
void init(){
cnt=0;
memset(head,-1,sizeof(head));
}
void insert(ll x,ll y){
ll tx=x%maxn;
val[cnt]=x,pos[cnt]=y;
nxt[cnt]=head[tx];
head[tx]=cnt++;
}
ll get(ll x){
ll tx=x%maxn;
for(int i=head[tx];~i;i=nxt[i]){
if(val[i]==x) return pos[i];
}
return -1;
}
}
unordered_map<ll,ll>mp;
long long n,x0,a,b,p;
ll mul(ll a,ll b){return 1ll*a%p*b%p;}
ll fpow(ll a,ll b){
ll ans=1;
while(b){
if(b&1)ans=mul(ans,a);
a=mul(a,a);
b>>=1;
//cout<<ans<<endl;
}
return ans;
}
ll inv(ll x){
return fpow(x,p-2);
}
ll add(ll a,ll b){return (a%p+b%p+p)%p;}
int main(){
int t;
scanf("%d",&t);
while(t--){
ll q,v;
//mp.clear();
Hash::init();
scanf("%lld%lld%lld%lld%lld",&n,&x0,&a,&b,&p);
scanf("%lld",&q);
ll m=sqrt(p)+1;
ll t=fpow(a,m);
ll s=1;
for(int i=1;i<=m;i++){
/* if(!mp.count(s)){
mp[s]=i*m;
}*/
s=1ll*s*t%p;
ll tp=Hash::get(s);
if(tp==-1) Hash::insert(s,i*m);
}
while(q--){
scanf("%lld",&v);
// mp.clear();
if(a==0){
if(x0==v)printf("0\n");
else if(v==b)printf("1\n");
else printf("-1\n");
continue;
}
if(a==1){
ll ans=((v-x0+p)%p)*inv(b)%p;
if(ans<n)printf("%lld\n",ans);
else printf("-1\n");
continue;
}
ll y=mul(add(b,mul(v,a-1)),inv(((mul(a,x0)-x0+p)%p+b)%p));
//cout<<"y "<<y<<endl;
ll ans=p+1;
ll s=y;
if(y==1){
printf("0\n");
continue;
}
for(int i=0;i<m;i++){
/* if(mp.count(s)){
ans=min(ans,mp[s]-i);
}*/
ll tp=Hash::get(s);
if(tp!=-1) ans=min(ans,tp-i);
s=s*a%p;
}
if(ans>p||ans>=n)printf("-1\n");
else printf("%lld\n",ans);
}
}
return 0;
}