Uva 11426 GCD - Extreme (II)(基本数论)

筛选法求欧拉函数值,之后筛选法求出g[i]的值,然后遍历求解....

关于g这个值,可以断定g[i]=phi[i]+gcd(i,j),1<j<i,并且和i不互质。

设函数g(n) = gcd(i,n) (1<=i<=n),对于任意给定的i 。 g(1) = 1 ,g(n)=g(m1)*g(m2) (n=m1*m2 且 (m1, m2)= 1),由积性函数定义,g是积性函数。由具体数学上的结论,积性函数的和也是积性的。所以f(n) = ∑gcd(i, n)也是积性函数。n>1时n可以被唯一分解 n=p1^a1*p2^a2*...*ps^as,由于f(n)是积所以f(n) = f(p1^a1)*f(p2^a2)*...f(pr^ar)。所以只要求f(pi^ai)就好,如果d是n的一个约数,那么1<=i<=n中gcd(i,n) = d的个数是phi(n/d),即n/d的欧拉函数

f(pi^ai) =  Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+ pi^ai *Φ(1)

     = pi^(ai-1)*(pi-1) + pi*pi^(ai-2)*(pi-1)....+pi^ai

     =  pi^ai*(1+ai*(1-1/pi))


上面那段话是含n的,这个题目是不含n的..

附上代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cctype>
#include<iostream>
#include<cmath>
#include<set>
using namespace std;
#define eps 1e-8
#define N 4000000
#define LL long long
LL ans[N+10];
int phi[N+10],g[N+10];
void euler()
{
    for(int i=1;i<=N;i++)
        phi[i]=i;
    phi[1]=1;
    for(int i=2;i<=N;i++)
    {
        if(phi[i]==i)
        {
            phi[i]=i-1;
            for(int j=i+i;j<=N;j+=i)
            {
                phi[j]=phi[j]/i*(i-1);
            }
        }
    }
}
void db()
{
    euler();
    memset(g,0,sizeof(g));
    for(int i=1;i<=N;i++)
    {
        for(int j=i+i;j<=N;j+=i)
            g[j]+=i*phi[j/i];
    }
    ans[2]=g[2];
    for(int i=3;i<=N;i++)
        ans[i]=ans[i-1]+g[i];
}
int main()
{
    db();
    int n;
    while(scanf("%d",&n),n)
        printf("%lld\n",ans[n]);
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值