覆盖引理的证明


覆盖引理   

令 $E\subset F\subset B_1$ 为可测集. 假设 $\delta\in(0,1)$, 且满足
(1)$|E|<\delta|B_1|$;
(2)对任意的开球 $B\subset B_1$, 如果 $|E\cap B|\geq\delta|B|$, 则 $B\subset F$.
那么 $|E|\leq\mu|F|$ 对某个常数 $0<\mu<1$.

证明: 不失去一般性,  我们假设 $|E|\neq0$. 则由Lebesgue微分定理可知, 存在 $|\tilde{E}|$ 使得 $|\tilde{E}|=|E|$, 且对任意的 $x\in \tilde{E}$, 总存在 $B_x\subset B_1$ 满足 $x\in B_x$ 以及 $|E\cap B_x|=\delta|B_x|$. (其存在形由形变连续性和介值定理可知.)  对于这样的球族,  注意到他们的半径都不大于1, 由Vitali覆盖引理可知,  我们能选择出至多可数个球 $\{B_i\}$ 满足 $\cup_{x\in \tilde{E}} B_x\subset \cup_{i} 5B_i$. 于是可知
$|F\setminus E|\geq |(F\setminus E)\cap\cup_{i} B_i|\geq \sum_{i} |(F\cap B_i)\setminus (E\cap B_i)|=\sum_{i} (1-\delta)|B_i|\geq\frac{1-\delta}{5^n}|\cup_{i} 5B_i|\geq\frac{(1-\delta)}{5^n}|E|.$ 

因此  $|F|=|F\setminus E|+|E|\geq (1+\frac{(1-\delta)}{5^n})|E|.$ 

证毕!

证明: (另外一个证明)  我们现对上面的球族的并集来做估计.
$|\cup_{x\in \tilde{E}} B_x|=|\cup_{x\in \tilde{E}} B_x\cap E|+|(\cup_{x\in \tilde{E}} B_x)\setminus E|\geq |E|+|(\cup_{i} B_i)\setminus E|$

$=|E|+(1-\delta)\sum_i|B_i|\geq |E|+ \frac{1-\delta}{5^n}|\cup_i5B_i|\geq |E|+\frac{1-\delta}{5^n}|\cup_{x\in \tilde{E}} B_x|$.

我们有

$ (1-\frac{1-\delta}{5^n})|F|\geq (1-\frac{1-\delta}{5^n})|\cup_{x\in \tilde{E}} B_x|\geq|E|$.

 

若将引理变形如下或者其他的等价形式即对$|F|$加条件结论也总是正确的.

令 $E\subset F\subset B_1$ 为可测集. 假设 $\delta\in(0,1)$, 且满足
(1)$|E|<\delta|B_1|$;
(2)对任意的开球 $B\subset B_1$, 如果 $|E\cap B|\geq\delta|B|$, 则 $|F\cap B|\geq\tilde{\delta}|B|$, 其中 $0<\delta<\tilde{\delta}\leq1$.
那么 $|E|\leq\mu|F|$ 对某个常数 $0<\mu<1$.

 

Lihe Wang, 也给出了如下的覆盖引理:

令 $E\subset F\subset B_1$ 为可测集. 假设 $\epsilon\in(0,1)$, 且满足
(1)$|E|<\epsilon |B_1|$;
(2)对任意的 $x\in B_1$ 的开球 $B_r(x)$, 如果 $|E\cap B_r(x)|\geq\epsilon |B_r(x)|$, 则 $B_r(x)\cap B_1\subset F$.
那么 $|E|\leq 20^n\epsilon |F|$.

 

以上是不扩张球的情形,一般的如C-Z分解所诱导的测度估计引理需要扩张方体或者球,其实总是可以可以等到类似的结果.

转载于:https://www.cnblogs.com/Analysis-PDE/p/9057157.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值