图论定理证明(1)

定理内容

对于任意 N ≥ 2 N \ge 2 N2 个两两相交的环,存在一条边被所有这些 N N N 个环覆盖。

证明

定义一个命题映射 P ( N ) P(N) P(N) 为 “对于任意 N N N 个两两都相交的环,存在一条边被所有这些 N N N 个环覆盖。”其中 N ≥ 2 N \ge 2 N2

引理1: 一个环或者 N N N 个两两都相交的环构成一张强连通图。其中 N ≥ 2 N \ge 2 N2

引理2
1、对于一个强连通图中的两条边 u , v u,v u,v,存在一条包含这两条边的路径使得 为起始边, 为终末边;
2、对于一个边数 ≥ 3 \ge 3 3 的强连通图中的三条边 u , v , w u,v,w u,v,w,存在一条包含这三条边的路径使得 u u u 为起始边, v v v 为终末边。

以上两个引理相对都是 trivial 的,所以这里略去证明。

引理3: 若 P ( N ) P(N) P(N) 成立, P ( N + 1 ) P(N+1) P(N+1)也成立。

引理3证明

设这 N + 1 N+1 N+1 个环分别为 R ( 1 ) 、 R ( 2 ) . . . R ( N ) R(1)、R(2) ... R(N) R(1)R(2)...R(N),因为 P ( N ) P(N) P(N)成立,我们可设边 a a a 为被这 N N N 个环都覆盖的边。

假设 P ( N + 1 ) P(N+1) P(N+1) 不成立,那么。而由于 R ( N + 1 ) R(N+1) R(N+1) 要与前 N N N 个环都相交,必然存在两条边 u , v u,v u,v 满足 u , v ∈ R ( N + 1 ) u,v \in R(N+1) u,vR(N+1) u , v u,v u,v 属于前 N N N 个环的并集。
根据引理2我们可以找到一条路径 D D D 包含 u , v , a u,v,a u,v,a 且以 u u u 为起始边, v v v 为终末边。

而因为 u , v ∈ R ( N + 1 ) u,v \in R(N+1) u,vR(N+1) R ( N + 1 ) R(N+1) R(N+1) 为强联通图,所以我们可以找到一条路径 D ′ D' D v v v 为起始边, u u u 为终末边。路径 D ′ D' D D D D 构成一个环不妨设为 R R R

由于 R R R 中包含 R ( N + 1 ) R(N+1) R(N+1) 的边,所以 R R R R ( 1 ) 、 R ( 2 ) . . . R ( N ) R(1)、R(2)...R(N) R(1)R(2)...R(N) 都是相异的,又因为 a ∈ R a \in R aR,所以 R R R R ( N + 1 ) R(N+1) R(N+1) 是相异的。所以此时图中存在 N + 2 N+2 N+2 个环,与题设矛盾。
因此假设不成立,引理3得证。

而我们知道 P ( 2 ) P(2) P(2) 是显然成立的,因此原命题得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值