如何用AI算法识别骗保行为?蚂蚁保险智能风控模型首次公开!

阿里妹导读:人生充满意外和不确定性,保险的使命,就是给人以安全感。风控是保险业务正常发展的重要环节,成长于互联网环境下的保险风控更为重要。


今天,阿里工程师正在利用跨平台体系下的海量数据资源和智能风控模型,优化保险风控,提升保险业务整体风控能力,让保险更好帮助人们对抗风险,减少后顾之忧。


保险风控的背景以及挑战


商业保险是一种用于保障未来的商业行为。除了我们常见的车险、财产险、健康险等传统保险以外,运费险、账户安全险等在互联网环境下应运而生。风控是保险业务正常发展的重要环节,成长于互联网环境下的保险风控更为重要,其中保险风控主要有两个重要部分:


  • 核保/准入:判断是否承保,如何承保的过程,精准的准入能力对于骗保风险防控有非常重要意义,尤其是冷启动阶段

  • 核赔:判断理赔是否符合保险保障条款,是防控骗保的核心手段之一


受到有限的数据、大规模计算平台缺乏等原因,传统保险公司只能基于有限的特征(如年龄、性别、出险情况),结合经验提炼出来一些简单规则(当然,有些公司尝试使用LR等方法建模)去辅助保险员的核保、核赔工作。


支付宝以及淘宝体系下的数据的积累,给我们提供了更好的资源来做风控,从中可以挖掘出用户的消费习惯、社会关系、经济能力等多维度深层次信息,一定程度上可以反映出用户的骗保概率、出险概率,用于甄别用户骗保行为。我们希望能够利用跨平台体系下的海量数据资源和智能风控模型,优化保险风控这两个重要环节,提升保险业务整体风控能力。


值得注意的是,在构建保险场景下的风控模型,以下两个重要的问题需要考虑:


  • 可解释性:对于保险领域的模型来说,特别是风控模型,模型的可解释型是一个重中之重。

  • 团伙性:大部分的骗保行为都是团伙行为。个体行为可能不明显或者容易伪装,但是潜在团伙关系是很难被完全掩饰的。如何挖掘图上的潜在信息,挖掘出团伙对甄别骗保行为有很大的帮助。

本文依托于超大规模机器学习框架参数服务器PS[1]开发的FastRep图算法和PS-SMART算法,并通过特征工程精细化账号行为属性等,最终在X产品的两个重要场景准入和核赔上上线,大大减少了骗保案件。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值