平衡二叉树

https://leetcode.cn/problems/balanced-binary-tree/solutions/746538/shu-ju-jie-gou-he-suan-fa-ping-heng-er-c-ckkm/

1,从上到下
平衡二叉树要求的是左右子节点的高度不能超过1,所以我们可以判断树的左右两个子节点的高度只要不超过1就行,而树的高度怎么计算呢,其实很简单,代码如下

//计算树中节点的高度
public int depth(TreeNode root) {
    if (root == null)
        return 0;
    return Math.max(depth(root.left), depth(root.right)) + 1;
}

所以这题的代码我们也很容易写出来

public boolean isBalanced(TreeNode root) {
    if (root == null)
        return true;
    //分别计算左子树和右子树的高度
    int left = depth(root.left);
    int right = depth(root.right);
    //这两个子树的高度不能超过1
    return Math.abs(left - right) <= 1;
}

//计算树中节点的高度
public int depth(TreeNode root) {
    if (root == null)
        return 0;
    return Math.max(depth(root.left), depth(root.right)) + 1;
}

但这里会有个问题,因为二叉平衡树的任何一棵子树也都必须是平衡的,上面我们只判断了根节点的两个子节点的高度是否小于等于1,没有判断子树是否是平衡的。

public boolean isBalanced(TreeNode root) {
    if (root == null)
        return true;
    //分别计算左子树和右子树的高度
    int left = depth(root.left);
    int right = depth(root.right);
    //这两个子树的高度不能超过1,并且他的两个子树也必须是平衡二叉树
    return Math.abs(left - right) <= 1 && isBalanced(root.left) && isBalanced(root.right);
}

//计算树中节点的高度
public int depth(TreeNode root) {
    if (root == null)
        return 0;
    return Math.max(depth(root.left), depth(root.right)) + 1;
}

作者:数据结构和算法
链接:https://leetcode.cn/problems/balanced-binary-tree/solutions/746538/shu-ju-jie-gou-he-suan-fa-ping-heng-er-c-ckkm/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值