迷宫的最短路径

本文介绍了一种使用广度优先搜索(BFS)解决迷宫寻路问题的经典算法实现。通过定义节点结构体和方向数组,利用队列进行节点扩展,避免重复访问已检查路径。文中提供了两种实现方式:一种采用结构体存储节点信息;另一种使用pair简化代码。适用于初学者理解BFS的基本原理及其应用场景。
摘要由CSDN通过智能技术生成

</pre>简单的BFS<p></p><p></p><pre code_snippet_id="1633553" snippet_file_name="blog_20160403_1_1107701" name="code" class="cpp">#include <iostream>
#include<cstring>
#include<queue>
using namespace std;
const int dx[4] = {0,0,-1,1};
const int dy[4] = {-1,1,0,0};
struct node
{
    int x,y;
    int step;
};
int N,M;
node now;
node New;
node S,T;
char map[50][50];
bool vis[50][50];
int bfs()
{
    memset(vis,false,sizeof(vis));
    queue<node>q;
    q.push(S);
    vis[S.x][S.y] = true;
    while(!q.empty())
    {
        now = q.front();
        q.pop();
        for(int i=0; i<4; i++)
        {
            New.x = now.x + dx[i];
            New.y = now.y + dy[i];
            New.step = now.step + 1;
            if(New.x>=N || New.y>=M || vis[New.x][New.y] || map[New.x][New.y] == '#')
                continue;
            vis[New.x][New.y] = true;
            q.push(New);
            if(New.x == T.x && New.y == T.y)
                return New.step;

        }
    }
    return -1;
}
int main()
{

    cin >> N >> M;
    for(int i=0; i<N; i++)
    {
        for(int j=0; j<M; j++)
        {
            cin >> map[i][j];
            if(map[i][j] == 'S')
            {
                S.x = i;
                S.y = j;
                S.step = 0;
            }
            if(map[i][j] == 'G')
            {
                T.x = i;
                T.y = j;
            }
        }
    }
    int ans = bfs();
    if(ans<0)
        cout << "trapped" << endl;
    else
        cout << ans << endl;
    return 0;
}
/*
5 5
#..S#
..#..
.#...
..G##
.####

*/
<pre name="code" class="cpp"><p>这样写强行停止</p><p>#include<iostream></p>#include<cstring>
#include<queue>
using namespace std;

struct node
{
    int x,y;
    int t;
};
bool vis[50][50];
char map[50][50];///****************
node now;
node New;
node S,T;

int n,m;
const int dx[4] = {0,0,-1,1};
const int dy[4] = {1,-1,0,0};///*************
int bfs()
{
    memset(vis,false,sizeof(vis));
    queue<node>q;
    q.push(S);
    vis[S.x][S.y] = true;
    while(!q.empty())
    {
        now = q.front();
        q.pop();
        for(int i=0; i<4; i++)
        {
            New.x = now.x + dx[i];
            New.y = now.y + dy[i];
            New.t = now.t + 1;
            if(New.x>=n || New.y>=m || vis[New.x][New.y] || map[New.x][New.y] == '#')
                continue;
            vis[New.x][New.y] = true;
            q.push(New);
            if(New.x == T.x && New.y == T.y)
                return New.t;
        }
    }
   return -1;
}
int main()
{

    cin >> n >> m;

    for(int i=0; i<n; i++)
    {
        for(int j=0; j<m; j++)
        {
            cin >> map[i][j];
            if(map[i][j] == 'S')
            {
                S.x = i;
                S.y = j;
                S.t = 0;
            }
            if(map[i][j] == 'G')
            {
                T.x = i;
                T.y = j;
            }
        }
    }
    int ans = bfs();
    if(ans < 0)
        cout << "trapped" << endl;
    else
        cout << ans << endl;
    return 0;
}

书上的解法 pair<int , int>
#include<iostream>
#include<queue>
using namespace std;

const int INF = 100000000;
const int maxn = 100;
typedef pair<int, int>P;
char map[maxn][maxn];
int N, M;
int sx, sy;
int gx, gy;
int d[maxn][maxn];
const int dx[4] = {0, 0, 1, -1};
const int dy[4] = {-1, 1, 0, 0};
int bfs()
{
    queue<P>q;
    for(int i=0; i<N; i++)
    {
        for(int j=0; j<M; j++)
            d[i][j] = INF;
    }
    q.push(P(sx, sy));
    d[sx][sy] = 0;
    while(q.size())
    {
        P p = q.front();
        q.pop();
        if(p.first == gx && p.second == gy)
            break;
        for(int i=0; i<4; i++)
        {
            int nx = p.first + dx[i];
            int ny = p.second + dy[i];
            if(nx>=0 && nx<N && ny>=0 && ny<M && map[nx][ny]!='#' && d[nx][ny] == INF)
            {
                q.push(P(nx, ny));
                d[nx][ny] = d[p.first][p.second] + 1;
            }
        }
    }
    return d[gx][gy];
}
int main()
{
    cin >> N >>M;
    for(int i=0; i<N; i++)
    {
        for(int j=0; j<M; j++)
        {
            cin >> map[i][j];
            if(map[i][j] == 'S')
            {
                sx = i;
                sy = j;

            }
            if(map[i][j] == 'G')
            {
                gx = i;
                gy = j;
            }
        }
    }
    int ans = bfs();
    cout << ans << endl;

    return 0;
}


 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值