卷积神经网络与文本深度学习:原理、架构与应用
1. 卷积神经网络架构设计
1.1 部分连接与ReLU
在ReLU连接中,存在全连接和部分连接的概念。部分连接指当前层的每个节点并非与下一层的所有节点相连;而全连接则是每个节点与下一层的所有节点都连接,像MLP、RNN和RBM等神经网络采用的就是全连接方式。在推导权重更新规则时,通常将ReLU视为线性函数。
1.2 池化 + ReLU架构
1.2.1 简单版本
最简单的CNN版本由池化层和ReLU组成。其中,池化层负责特征提取,带有ReLU的感知机用于分类。在这个架构里,假设输入层和输出层之间是部分连接。池化层会在输入向量上滑动窗口并选取最大值,经过池化层映射后的向量再由ReLU进行分类,部分连接可看作是部分连接值为零的全连接。
1.2.2 单池化层与多ReLU层版本
该版本由单个池化层和多个ReLU层构成,目的是解决输入值和最终输出值之间的非线性问题。池化层通过从每个窗口中选取代表性值来降低维度,第一个ReLU根据池化层映射的值计算输出,当前ReLU的输出作为下一个ReLU的输入,最终结果在最后一个ReLU中计算得出。
1.2.3 多池化层与多ReLU层版本
此版本将单个池化层扩展为多个池化层。输入向量经过一系列池化层映射为维度降低的向量,再通过一系列ReLU计算得到最终输出向量。后续还会考虑多池化层和多ReLU层的并行连接方式。
1.3 卷积 + ReLU架构
1.3.1 单卷积层与单ReLU层版本
输入向量通过卷积层映射为另
 
                       
                           
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                  
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            