使用Lantern实现RAG(检索增强生成)

技术背景介绍

RAG(检索增强生成)是一种结合检索和生成的技术,在生成式AI中非常有用。Lantern 是一个开源的向量数据库,基于PostgreSQL构建,能够在数据库内进行向量搜索和嵌入生成。在本文中,我们将演示如何使用Lantern和OpenAI的API实现RAG。

核心原理解析

RAG的核心原理是在生成内容之前通过检索步骤获取相关文档,然后利用这些文档生成更加准确和上下文相关的内容。Lantern利用其向量数据库的特性,使这一过程高效、快速。

环境搭建

首先我们需要设置环境变量来访问OpenAI和Lantern的API。

export LANTERN_URL=your_lantern_url
export LANTERN_SERVICE_KEY=your_lantern_service_key
export OPENAI_API_KEY=your_openai_api_key

设置Lantern数据库

如果尚未设置Lantern数据库,请按照以下步骤操作:

  1. 访问 Lantern 创建您的Lantern数据库。
  2. 在您喜欢的SQL客户端中,使用以下SQL脚本设置数据库:
-- 创建存储文档的表
create table
  documents (
    id uuid primary key,
    content text, -- 对应 Document.pageContent
    metadata jsonb, -- 对应 Document.metadata
    embedding REAL[1536] -- 适用于 OpenAI 嵌入
  );

-- 创建搜索文档的函数
create function match_documents (
  query_embedding REAL[1536],
  filter jsonb default '{}'
) returns table (
  id uuid,
  content text,
  metadata jsonb,
  similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
  return query
  select
    id,
    content,
    metadata,
    1 - (documents.embedding <=> query_embedding) as similarity
  from documents
  where metadata @> filter
  order by documents.embedding <=> query_embedding;
end;
$$;

使用环境变量

由于我们使用Lantern和OpenAI的嵌入,需要加载它们的API密钥。

代码实现演示

首先,安装LangChain CLI:

pip install -U langchain-cli

创建一个新的LangChain项目,并安装rag-lantern包:

langchain app new my-app --package rag-lantern

如果要添加到现有项目中,只需运行:

langchain app add rag-lantern

server.py文件中添加以下代码:

from rag_lantern.chain import chain as rag_lantern_chain

add_routes(app, rag_lantern_chain, path="/rag-lantern")

(Optional) 配置LangSmith以跟踪、监控和调试LangChain应用:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=your_langchain_api_key
export LANGCHAIN_PROJECT=your_project  # 如果未指定,默认为 "default"

在目录中直接启动LangServe实例:

langchain serve

这将启动一个运行在本地http://localhost:8000的FastAPI应用。我们可以在http://127.0.0.1:8000/docs查看所有模板,在http://127.0.0.1:8000/rag-lantern/playground访问操场。

从代码中访问模板:

from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/rag-lantern")

应用场景分析

RAG技术在诸多场景中都可以应用,比如:

  • 文档问答系统
  • 客服机器人
  • 内容生成和优化

实践建议

  1. 确保嵌入维度与数据库定义一致。
  2. 优化SQL查询以提升检索效率。
  3. 利用LangSmith进行监控和调试,确保应用在不同环境下的稳定性。

如果遇到问题欢迎在评论区交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值