(HTM)nupic空间沉积池实现解读

本文详细解读了nupic库中层次时序记忆(HTM)的空间沉积池(Spatial Pooler)算法实现。通过分析Python代码,介绍了关键参数及其作用,如PotentialRadius、PotentialPct、GlobalInhibition等,并阐述了计算激活程度、抑制过程、学习过程和促进机制。同时,提供了相关学习资源和讨论群信息。
摘要由CSDN通过智能技术生成

(HTM)层次时序记忆-空间沉积池实现解读

如果你对HTM感兴趣,我建立了一个群,我们共同学习交流。515743445。

阅读本文前建议先阅读HTM白皮书(需要了解sp和tm的工作步骤),以及论文The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding

本文研究src/nupic/algorithms/spatial_pooler.py的代码实现

我们以Complete-algo-example.py为实例对其进行研究。该范例的数据来自gymdata.csv。这是一个关于不同时间consumption数据的文件。其日期部分使用DateEncoder转换为SDR,其consumption部分使用RandomDistributedScalarEncoder转换为SDR。合并后输入sp。该范例的参数存放在model.yaml中。需要注意,该文件中SDRClassifierFactory.create()可能由于配置问题存在错误,我们直接使用python实现的SDRClassifier。另外其使用的tm与opf中使用的是不同的版本,导致结果不同。

 

SpatialPooler主要包括两个方法。init方法接收入参,构造sp。compute方法接收一个sdr,并计算激活的列。(这里的列指圆柱区域)

 

Sp的一些重要入参包括:

InputDimensions=(946,),一维,输入sdr的大小。默认(32,32)是二维的。

ColumnDimensions=(2048,),一维,输出sdr的大小,默认(64,64)是二维的。

PotentialRadius=16.指每一个列,可以建立前馈输入的范围(半径)。其实际效果是,每一个圆柱的潜在输入,在其与输入sdr的对应输入位的一定范围内。

PotentialPct=0.85 潜在突触范围内,85%是潜在输入。

GlobalInhibition=1使用全局抑制

lacalAreaDensity=-1.0 抑制范围内活跃列的密度,不启用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值