HTM皮质学习算法资料

HTM(Hierarchical Temporal Memory)算法由Numenta公司的Jeff Hawkins提出,旨在模拟新大脑皮层工作原理,解决模式匹配与预测问题。不同于传统的人工智能算法,HTM强调信息的时空特性,具有记忆性和可学习性,广泛应用于图像识别、故障预测等领域。Numenta提供了基于HTM的Python平台和开源项目Nupic。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

HTM(Hierarchical Temporal Memory)算法,英文全称HTM Cortical Learning Algorithms是由《人工智能的未来》(On Intelligence)一书作者Jeff Hawkins创建的Numenta公司(先改名为Grok)发表的新一代人工智能算法。Jeff Hawkins 是一位工程师,连续创业者,科学家,发明家,作家。他曾是两个移动计算机公司Palm,Handspring的创始人,是很多计算机产品的设计师,比如Palm Pilot 和 Treo smartphone。虽然是一个计算机科学家,他向来就对神经科学和新大脑皮层理论有很深的兴趣。在2002年,他创建了红杉神经科学研究院,这是一家专注研究大脑信息处理方法的科研机构。2004年,他出版了《人工智能的未来》一书,描述新大脑皮层的信息处理方式。2005年,他与人共同创立Numenta公司,他希望该公司能够成为新兴的机器智能领域的催化剂

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值