文章目录
- 1. ConcurrentHashMap
- 2. 线程安全队列
- 2.1 线程安全队列实现方式:
- 2.2 ConcurrentLinkedQueue
- 2.3 阻塞队列 BlockingQueue
- 3. Fork/Join 框架
1. ConcurrentHashMap
1.1 优点
- HashMap代替线程不安全
- HashTable效率低下(synchronized)
- ConcurrentHashMap锁分段技术可有效提升并发访问率
1.2 结构
- ConcurrentHashMap
- Segment (分段锁,可重入锁,类似HashMap的数组和链表结构)
- HashEntry(链表结构元素)
- Segment (分段锁,可重入锁,类似HashMap的数组和链表结构)
一个ConcurrentHashMap中包含一个Segment数组,每个Segment数组包含一个HashEntry数组,每个HashEntry是一个链表结构的元素。
当对HashEntry数组的数据进行修改时,必须首先获得与它对应的Segment锁。
1.3 操作
1.3.1 get操作
- 先经过一次再散列,用这个散列值通过散列运算定位到Segment,再通过散列算法定位到元素。
- get操作不需要加锁,通过将共享变量(如统计当前Segment大小的count字段和HashEntry的value)定义成volatile类型实现。支持多线程读和单线程写(写入值不依赖原值时支持多线程写)。
1.3.2 put操作
1.3.2.1 过程
- 需要加锁,先定位到Segment,在Segment中进行插入操作。
- 插入操作包括两个步骤:
- 判断 Segment 中 HashEntry 是否需要扩容;
- 定位添加元素的位置并添加到HashEntry数组中。
1.3.2.2 扩容
- 通过HashEntry 数组大小是否超过阈值判断是否扩容。Segment 扩容比 HashMap 更恰当,HashMap 是插入后判断的,有可能扩容后不再有新元素插入,这时HashMap就进行了一次无效的扩容。
- 扩容过程:创建一个两倍原来容量的数组,将原数组元素再散列后插入新的数组里。
- ConcurrentHashMap 不会对整个容器进行扩容,而只对某个Segment进行扩容。
1.3.3 size操作
先尝试2次不加锁方式统计各个Segment大小之和,如果统计过程中,容器的count发生了变化,则再采用加锁的方式来统计所有Segment大小之和。
判断统计的时候容器是否发生变化:在put、remove 和 clean 方法里操作元素前都会将变量 modCount 进行加1, 故可以统计size前后比较 modCount 是否发生变化。
2. 线程安全队列
2.1 线程安全队列实现方式:
- 阻塞方式:一个锁(入队出队用同一把锁)或两个锁(入队出队用不同的锁)
- 非阻塞方式:循环CAS实现
2.2 ConcurrentLinkedQueue
2.2.1 特点
非阻塞,基于链接节点的无界线程安全队列,采用先进先出规则对节点排序,添加元素时加到队列尾部,取出元素时返回队列头部元素。采用"wait-free"算法(即CAS)。
2.2.2 结构
- ConcurrentLinkedQueue 由 head 节点和 tail 节点组成;
- 每个节点(Node)由节点元素 item 和指向下一个节点的应用 next 组成;
- 默认情况 head 节点存储的元素为空,tail 节点等于 head 节点。
2.2.3 入队
2.2.3.1 入队过程
将入队节点添加到队列尾部。
- 将入队节点设置成当前队列尾节点的下一个节点;
- 更新 tail 节点:
- 如果 tail 节点的 next 节点为空,设置 tail 节点的 next 为入队节点;
- 如果tail节点的next节点不为空,设置 tail 节点为入队节点。
(所以 tail 节点不总是尾节点)
2.2.3.2 HOPS设计意图
为什么不让 tail 永远指向队列尾节点?
- 为了避免每次都使用循环CAS更新 tail 节点,提高效率。
- 当 tail 节点和尾节点的距离大于等于常量 HOPS(默认为1)时才更新 tail 节点。
(用定位尾节点操作代替每次更新 tail 节点,本质上是通过增加对 volatile 变量的读操作来减少对 volatile 变量的写操作)
注意:入队方法永远返回 true,故不要通过返回值判断入队是否成功。
2.2.4 出队
不是每次出队都更新 head 节点,
- 当 head 节点里有元素时,直接弹出 head 节点里的元素;
- 当 head 节点里没有元素时,出队操作才会更新 head 节点。
(同样是通过 hops 变量减少使用 CAS 更新 head 节点的消耗)
2.3 阻塞队列 BlockingQueue
2.3.1 概念
一个支持两个附加操作的队列:
- 支持阻塞的插入方法:当队列满时,队列阻塞插入元素的线程,直到队列不满。
- 支持阻塞的移除方法:队列为空时,获取元素的线程会等待队列变为非空。
2.3.2 应用场景
- 常用于生产者和消费者的场景
2.3.3 插入移除操作的4种处理方式
方法/处理方式 | 抛出异常 | 返回特殊值 | 一直阻塞 | 超时退出 |
---|---|---|---|---|
插入方法 | add(e) | offer(e) | put(e) | offer(e,time,unit) |
移除方法 | remove() | poll() | take() | poll(time, unit) |
检查方法 | element() | peek() | 不可用 | 不可用 |
- 抛出异常:
- 队列满时,插入元素抛出 IllegalStateException(“Queue full”) 异常;
- 队列空时,取出元素抛出 NoSuchElementException 异常;
- 返回特殊值:
- 插入元素时,返回元素是否插入成功,成功返回true;
- 移除元素时,从队列里取出一个元素,没有则返回null;
- 一直阻塞:
- 队列满时,生产者线程 put 元素,队列会一直阻塞生产者线程,直到队列可用或响应中断退出。
- 队列空时,消费者线程 take 元素,队列会阻塞消费者线程,直到队列不为空;
- 超时退出:
- 当队列满时,生产者线程插入元素会阻塞生产者线程一段时间,超过指定时间,生产者线程就退出;
- 当队列空时,消费者线程取出元素会阻塞消费者线程一段时间,超过指定时间,返回null。
若是无界阻塞队列则不可能出现队列满的情况,所以使用put或offer方法永远不会被阻塞,且offer方法永远返回true。
2.3.4 Java阻塞队列
- ArrayBlockingQueue: 一个由数组结构组成的有界阻塞队列;
- LinkedBlockingQueue: 一个由链表结构组成的有界阻塞队列;
- PriorityBlockingQueue: 一个支持优先级排序的无界阻塞队列;
- DelayQueue: 一个使用优先级队列实现的无界阻塞队列;
- SynchronousQueue: 一个不存储元素的阻塞队列;
- LinkedTransferQueue: 一个由链表结构组成的无界阻塞队列;
- LinkedBlockingDeque: 一个由链表结构组成的双向阻塞队列。
2.3.4.1 ArrayBlockingQueue
有界,默认非公平(保证公平性会降低吞吐量),其使用可重入锁实现公平性:
public ArrayBlockingQueue(int capacity, boolean fair){
if (capacity <= 0) throw new IllegalArgumentException();
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}
2.3.4.2 LinkedBlockingQueue
有界,默认和最大长度为 Integer.MAX_VALUE。
2.3.4.3 PriorityBlockingQueue
无界,默认使用自然顺序升序排列,也可以自定义类实现 compareTo() 方法来指定元素排序规则,或者初始化时指定构造参数 Comparator 来排序,不能保证同优先级元素的顺序。
2.3.4.4 DelayQueue
2.3.4.4.1 特点
无界,支持延时获取元素,使用PriorityQueue 实现,元素必须实现 Delayed 接口, 创建元素时可指定多久才能从队列种获取当前元素。
2.3.4.4.2 应用场景
- 缓存系统设计:使用 DelayQueue 保存缓存元素的有效期,使用一个线程循环查询 DelayQueue, 一旦能从 DelayQueue 中获取元素时,表示缓存有效期到了。
- 定时任务调度:使用 DelayQueue 保存当天将会执行的任务和执行时间,一旦从 DelayQueue 中获取到任务就开始执行, 比如 TimeQueue 就是使用 DelayQueue 实现的。
2.3.4.4.3 实现Delay接口
参考 ScheduledThreadPoolExecutor 里 ScheduledFutureTask 类的实现,分三步:
- 对象创建时初始化基本数据,用time记录延时时间,用sequenceNumber标识元素在队列中的先后顺序;
- 实现 getDelay 方法,返回当前元素还需要延时多长时间,单位是纳秒 , time小于当前时间时返回负数
public long getDelay(TimeUnit unit){
//调用时可指定任意单位
return unit.convert(time-now(), TimeUnit.NANOSECONDS);
}
- 实现 compareTo 方法来指定元素的顺序,如让延时时间最长的放在队列末尾。
2.3.4.4.4 实现延时阻塞队列
long delay = first.getDelay(TimeUnit.NANOSECONDS);
if(delay<=0)
return q.poll();
else if(leader != null)
//leader是一个等待获取队列头部元素的线程,不为空则表示已经有线程在等待获取头部元素
available.await();
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try{
available.awaitNanos(delay);
}finally{
if(leader == thisThread)
leader = null;
}
}
2.3.4.5 SynchronousQueue
不存储元素,每一个put操作必须等待一个take操作,否则不能继续添加元素。
支持公平访问队列,默认非公平。
适合传递性场景,吞吐量高于 LinkedBlockingQueue 和 ArrayBlockingQueue。
2.3.4.6 LinkedTransferQueue
无界,比其他阻塞队列多了 tryTransfer 和 transfer 方法。
2.3.4.6.1 transfer 方法
- 如果当前有消费者正在等待接收元素(使用take()或带时间限制的poll()方法时),transfer方法可以把生产者传入的元素立即传输给消费者;
- 如果没有消费者正在等待接收元素,transfer方法会将元素存放至队列的tail节点,并等到该元素被消费者消费了才返回。
2.3.4.6.2 tryTransfer 方法
试探生产者传入元素是否能直接传给消费者。立即返回true/false,不等待。
2.3.4.6.3 带超时时间的 tryTransfer 方法
试图将生产者传入的元素直接传给消费者,没有被消费则等待指定的时间再返回。
2.3.4.7 LinkedBlockingDeque
双向队列,两端均可插入和移出元素。可应用在“工作窃取”模式中。
因为多了一个入口,在多线程同时入队时,减少了一半竞争。
比起其他阻塞队列,多了 addFirst、addLast、offerFirst、offerLast、peekFirst、peekLast方法。
初始化时可设置容量防止其过度膨胀
2.3.5 阻塞队列实现原理
JDK使用通知模式实现,如ArrayBlockingQueue使用Condition实现。
- 队列满时生产者添加元素会阻塞生产者;
- 消费者消费一个元素后,会通知生产者当前队列可用。
3. Fork/Join 框架
3.1 概念
Java 7 提供的一个用于并行执行任务的框架。
- Fork: 将一个大任务切分为若干子任务并行的执行;
- Join: 合并这些子任务的执行结果,最后得到这个大任务的结果。
3.2 工作窃取算法(work-stealing)
3.2.1 介绍
多个线程执行子任务时,先执行完的线程可以去其他线程的队列里窃取一个子任务来执行。这时这两个线程访问同一队列,为了减少竞争,通常使用双端队列,被窃取任务线程永远从头部拿任务执行,窃取任务的线程永远从双端队列的尾部拿任务执行。
3.2.1 优缺点
- 优点:充分利用线程进行并行计算,减少线程间竞争。
- 缺点:
- 某些情况还是存在竞争(如双端队列里只有一个任务时);
- 消耗更多的系统资源(如创建多个线程和多个双端队列)。
3.3 Fork/Join框架设计及实现
3.3.1 设计
两个步骤:
- 分割任务: fork类负责将大任务分割成子任务,对子任务继续分割直到子任务足够小。
- 执行任务并合并结果: 分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果统一放在一个队列里,启动一个线程从队列里拿数据合并。
3.3.2 类
Fork/Join框架使用两个类来完成这两个步骤:
- ForkJoinTask: 任务类,使用时一般继承其两个子类:
- RecursiveAction: 用于没有返回结果的任务。
- RecursiveTask: 用于有返回结果的任务。
- ForkJoinPool: 用来执行ForkJoinTask。
任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列头部。
当一个工作线程的队列里暂时没有任务时,会随机从其他工作线程的队列尾部获取一个任务。
3.2.3 实现原理
ForkJoinPool 由 ForkJoinTask 数组和 ForkJoinWorkerThread 数组组成。
3.2.3.1 ForkJoinTask的fork方法实现原理
- 调用ForkJoinWorkerThread的pushTask方法异步执行这个任务,然后立即返回结果。
- pushTask方法把当前任务存放在ForkJoinTask数组队列里,然后调用ForkJoinPool的signalWork()方法唤醒或创建一个工作线程来执行任务。
3.2.3.2 ForkJoinTask的fork方法实现原理
调用doJoin方法得到当前任务状态,判断返回什么结果。
- 如果任务状态为执行完成,则直接返回任务状态;
- 如果没有执行完成,则从任务数组中取出任务并执行;
- 如果顺利执行完成,则设置任务状态为 NORMAL;
- 如果出现异常,则记录异常并设置任务状态为 EXCEPTIONAL。
3.2.4 Fork/join框架的异常处理
ForkJoinTask执行时可能抛异常,由于没办法在主线程里直接捕获异常,所以提供了以下方法:
- isCompletedAbnormally() 检查任务是否已经抛出异常或取消。
- getException() 方法,返回Throwable对象,
- 如果任务被取消则返回CancellationException;
- 如果任务没有完成或没有抛出异常则返回null。
3.3 应用示例
需求:计算 1+2+3+4 的结果。
思路:
- 考虑如何分割:如果希望每个子任务最多执行两个数相加,那么应设置阈值为2;那么Fork/Join框架会将这个任务fork成两个子任务,分别计算1+2和3+4,再join两者的结果。
- 因为是有结果的任务,所以必须继承 RecursiveTask。
代码示例:
package test;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.Future;
import java.util.concurrent.RecursiveTask;
public class CountTask extends RecursiveTask<Integer>{
private static final int THRESHOLD = 2;//阈值
private int start;
private inte end;
public CountTask(int start, int end){
this.start = start;
this.end = end;
}
//实现compute方法来处理任务
@Override
public Integer compute() {
int sum = 0;
//如果任务足够小就计算任务
boolean canCompute = (end-start) <= THRESHOLD;
if(canCompute){
for(int i=start; i<=end; i++){
sum += i;
}
} else {
//如果任务大于阈值,就分裂成两个子任务计算
int middle = (start + end) / 2;
CountTask leftTask = new CountTask(start, middle);
CountTask rightTask = new CountTask(middle+1, end);
//执行子任务
leftTask.fork();
rightTask.fork();
//等待子任务执行完,并得到其结果
int leftResult = leftTask.join();
int rightResult = rightTask.join();
//合并子任务
sum = leftResult + rightResult;
}
return sum;
}
public static void main(String[] args){
ForkJoinPool forkJoinPool = new ForkJoinPool();
//生成一个计算任务,负责计算 1+2+3+4
CountTask task = new CountTask(1, 4);
//执行一个任务
Future<Integer> result = forkJoinPool.submit(task);
try{
System.out.println(result.get());
}catch(InterruptedException e){
}catch(ExecutionExceptio e){
}
}
}