最全的一站式Coding配置人工智能项目到本机pycharm(conda安装TensorFlow)

人工智能的的项目,环境都不一般,配了三天环境的我只能说,哎,太难了。

终于把coding上的项目放到本地跑通了,现在来出一份指南。

包含内容:

  1. 用anaconda配置TensorFlow(参考链接https://www.cnblogs.com/HongjianChen/p/8385547.html
  2. 在pycharm中使用conda环境
  3. 检测TensorFlow环境是否安装成功
  4. 将coding的项目配置到本机
  5. 测试

anaconda配置TensorFlow

按照博主的内容一步一步往下走就可以完成配置

1. 安装好Anaconda3版本

  • (1) 注:可以发现最新版本是Anaconda5了(没关系,下载就是了)
  • (2) 注意安装anaconda时一定要把环境变量加入windows环境中。要没有勾选,安装完后还有手动加入。而且注意3.4版本是默认不加入anaconda的文件路径到环境变量的。
  • (3) 安装好了后,运行开始菜单—>Anaconda3—>Anaconda Prompt
conda list

可以看到已经安装了numpy、sympy等常用的包。

 

2. 安装Tensorflow
有两种方法可以安装:

[方法一] cpu版本pip install --ignore-installed --upgrade tensorflow

[方法二] gpu版本pip install --ignore-installed --upgrade tensorflow-gpu 注意gpu版要事先选好并装好CUDA和cuDNN
本文限于篇幅,只总结了方法一的安装流程

 

方法一:CPU版本

  • (1) 写这篇文章时,TensorFlow在Windows下已经支持支持Python 3.6版本。
  • (2) 打开Anaconda Prompt,输入清华仓库镜像,这样更新会快一些:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
  • (3) 在Anaconda Prompt中,用Anaconda3创建一个python3.6的环境,环境名称为tensorflow ,输入下面命令:
conda create -n tensorflow python=3.6



运行 开始菜单—>Anaconda3—>Anaconda Navigator,点击左侧的Environments,可以看到tensorflow的环境已经创建好了。

  • (4) 在Anaconda Prompt中启动tensorflow环境:
activate tensorflow

  • (5) 安装cpu版本的TensorFlow
pip install --upgrade --ignore-installed tensorflow


这样tensorflow cpu版本就安装好了。

当不使用TensorFlow时,可以通过deactivate来关闭TensorFlow环境:

  • (6) 测试cpu版本的TensorFlow
    重新打开Anaconda Prompt—>activate tensorflow—>python来启动tensorflow,并进入python环境

    测试代码如下:
#TensorFlow使用图(Graph)来表示计算任务;并使用会话(Session)来执行图,通过Session.close()来关闭会话(这是一种显式关闭会话的方式)。会话方式有显式和隐式会话之分。
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')  #初始化一个TensorFlow的常量
sess = tf.Session()  #启动一个会话
print(sess.run(hello))  

 

  • (7) 其他问题

当我们用Anaconda自带的iPython和Spyder以及jupyter notebook中输入import tensorflow as tf的时候会失败,显示如下No module named 'tensorflow‘,原因是我们没有在TensorFlow的环境下打开它们。

为此,我们需要在TensorFlow环境下安装这两个插件。

  • 打开Anaconda Navigator—>Environments—>tensorflow,选择Not installed,找到iPython和Spyder以及jupyter并安装。
    ipython:

    Spyder:

    jupyter notebook:

(7).1 好的,安装好三个插件后,我们用例子分别来运行试试(都要事先activate tensorflow来启动tensorflow):

ipython:

Spyder:

立刻唤醒Spyder,并运行:

jupyter notebook:

立刻唤醒jupyter notebook,并运行:

**(7).2 当然还有种更直接的方法由于直接tensorflow安装了三个插件,直接去菜单找到下面框选的,选一个用就行了,效果一样就不在赘述: **


如果选的是没框选的,是无法启动TensorFlow的,这点要格外注意。

参考来源:博客园https://www.cnblogs.com/HongjianChen/p/8385547.html 


 

在pycharm中使用conda环境 

1.打开pycharm -> file ->settings 

 

2.点开project

设置project interpreter为conda环境中的python.exe

即安装conda路径中的 python.exe

 

3. 应用

 

检查tensorflow环境是否安装

 

 

使用coding中的项目版本

git下载安装

里面有git的基本操作,这是官方文档,按步骤执行即可

https://help.coding.net/docs/host/git/start.html

 

项目运行

显示using TensorFlow backend 表示正在用TensorFlow环境运行 

 

 小结

 装环境真的是一件麻烦的事情。然后希望能看到的小伙伴们能体谅下自己的组长队长和直接上级,在群里发消息的时候扣个1,哈哈,我就永远是群聊的冷场王,现在我可爱的队员们已经不回我的私聊了,我好难,做个项目要被多少人拉黑~

每日一句给自己打鸡血:

Where of what's past is prologue    —— William Shakespeare

凡是过去,皆为序章   --------莎士比亚

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值