题意
在一个3*n的桌子上放一些1*2的多米诺骨牌(横竖放都可以),桌子上有一些不能放置的格子,除了这些不能放置的格子以外,还要求一个指定的格子不能被多米诺骨牌覆盖,同时这个空位可以通过移动附近的骨牌来转移到其他地方,剩下的格子要被全部覆盖,求放置的种数。
分析
先不管哪个预留的空位,对于一个已知的棋盘,一列一列转移状态。设状态:
dp[i][maks]↔在第i列mask中的行被覆盖,并且前i−1列被完全覆盖的放置种数
那么根据多米诺骨牌的特性,转移方程很容易写出。至于考虑被覆盖了的地方,判断一下吗,再跟已有的状态或运算一下就可以了。
现在考虑加上那个空位,显然要能移动,肯定是周围4个方向有能移向这个格子的骨牌。因此把确定了的骨牌就看做不能放置的区域来dp就可以了。但注意会有重复,因此要用容斥原理
AC代码
#include <bits/stdc++.h>
using namespace std;
const long long MOD=1e9+7;
int G1[10000+100][3];
int G[10000+100][3];
int x,y;
long long dp[11000][1<<3];
char inp[3][11000];
int n;
long long cal_dp()
{
memset(dp,0,sizeof dp);
dp[0][7]=1;
for(int i=1;i<=n;++i)
{
int cur=G[i][0]+(G[i][1]<<1)+(G[i][2]<<2);
for(int j=0;j<(1<<3);++j)
{
if(j&cur) continue;
dp[i][j|cur]=dp[i-1][7-j];
if(j==3||j==6)
dp[i][j|cur]=(dp[i][j|cur]+dp[i-1][7])%MOD;
if(j==7)
{
dp[i][j|cur]=(dp[i][j|cur]+dp[i-1][6])%MOD;
dp[i][j|cur]=(dp[i][j|cur]+dp[i-1][3])%MOD;
}
}
}
return dp[n][7];
}
long long solve()
{
vector<int> avail;
const int dx[]={1,-1,0,0};
const int dy[]={0,0,1,-1};
for(int i=0;i<4;++i)
{
bool can=1;
if(x+dx[i]*2>0&&x+dx[i]*2<=n&&y+dy[i]*2>=0&&y+dy[i]*2<3)
{
for(int j=1;j<=2;++j)
if(G1[x+dx[i]*j][y+dy[i]*j])
can=0;
}
else
can=0;
if(can)
avail.push_back(i);
}
long long res=0;
for(int i=1;i<(1<<avail.size());++i)
{
memcpy(G,G1,sizeof G1);
for(int j=0;j<avail.size();++j)
if(1&(i>>j))
for(int k=1;k<=2;++k)
G[x+dx[avail[j]]*k][y+dy[avail[j]]*k]=1;
if(__builtin_popcount(i)&1)
res=(res+cal_dp())%MOD;
else
res=(res-cal_dp()+MOD)%MOD;
}
return res%MOD;
}
int main()
{
cin>>n;
for(int i=0;i<3;++i)
scanf("%s",inp[i]);
for(int i=0;i<n;++i)
{
for(int j=0;j<3;++j)
{
if(inp[j][i]=='.')
G1[i+1][j]=0;
else if(inp[j][i]=='X')
G1[i+1][j]=1;
else if(inp[j][i]=='O')
{
G1[i+1][j]=1;
x=i+1;
y=j;
}
}
}
cout<<solve()<<endl;
/*cout<<x<<" "<<y<<endl;
for(int i=0;i<=n;++i)
{
cout<<i<<": ";
for(int j=0;j<8;++j)
cout<<dp[i][j]<<" ";
cout<<endl;
}*/
return 0;
}