LightOJ - 1356 Prime Independence (二分图 最大独立集 素数打表)

题意:

给你一个集合,让你从这个集合中挑选出几个数,使得这几个数中任意两个数相除后的值不能为素数

即挑选出来的这几个数不能互相冲突

最大独立集 = 所有点数 - 最大匹配数

呵。。呵。。。原先用的二维数组来标记  呵。。呵。。。。呵。。呵。。ER。。。MLE

vector 大法好!  orz

mmp。。。。。呸。。。吐槽完毕。。。。

因为a = b * k  (k为质数)  所以a必然比b多一个质因子  所以把偶数个质因子的数放到左边   把奇数个质因子的数放到右边   

 

代码如下:

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define maxn 500010
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _  ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int LL_INF = 0x7fffffffffffffff,INF = 0x3f3f3f3f;
int dx[maxn], dy[maxn], cx[maxn], cy[maxn], used[maxn];
int dot[maxn], vis[maxn], primes[maxn];
int nx, ny, dis, n, m;
int B[maxn], goal[maxn];
vector<int> G[40005];
void init()
{
    int cnt = 0;
    mem(vis,0);
    for(int i=2; i<maxn; i++)
        if(!vis[i]){
            primes[cnt++] = i;
            for(LL j=(LL)i*i; j<maxn; j+=i)
                vis[j] = 1;
        }
}

int bfs()
{
    queue<int> Q;
    dis = INF;
    mem(dx,-1);
    mem(dy,-1);
    for(int i=1; i<=nx; i++)
    {
        if(cx[i] == -1)
        {
            Q.push(i);
            dx[i] = 0;
        }
    }
    while(!Q.empty())
    {
        int u = Q.front(); Q.pop();
        if(dx[u] > dis) break;
        for(int v=0; v<G[u].size(); v++)
        {
            int i = G[u][v];
            if(dy[i] == -1)
            {
                dy[i] = dx[u] + 1;
                if(cy[i] == -1) dis = dy[i];
                else
                {
                    dx[cy[i]] = dy[i] + 1;
                    Q.push(cy[i]);
                }
            }

        }
    }
    return dis != INF;
}

int dfs(int u)
{
    for(int v=0; v<G[u].size(); v++)
    {
        int i = G[u][v];
        if(!used[i] && dy[i] == dx[u] + 1)
        {
            used[i] = 1;
            if(cy[i] != -1 && dis == dy[i]) continue;
            if(cy[i] == -1 || dfs(cy[i]))
            {
                cy[i] = u;
                cx[u] = i;
                return 1;
            }
        }
    }
    return 0;
}

int hc()
{
    int res = 0;
    mem(cx,-1);
    mem(cy,-1);
    while(bfs())
    {
  //      cout<<22222222222<<endl;
        mem(used,0);
        for(int i=1; i<=nx; i++)
        {
            if(cx[i] == -1 && dfs(i))
                res++;
        }
    }
    return res;
}

int main()
{

    init();
    int T;
    int ans = 0;
    scanf("%d",&T);
    while(T--)
    {
        for(int i=0; i<40005; i++) G[i].clear();
        mem(goal,-1);
        scanf("%d",&n);
        for(int i=1; i<=n; i++){
            scanf("%d",&dot[i]);
        }
        sort(dot+1,dot+n+1);
        for(int i=1; i<=n; i++)
            goal[dot[i]] = i;
        for(int i=1; i<=n; i++)
        {
            int cnt = 0, cnt2 = 0;
            int t = dot[i];
            for(int j=0; primes[j] * primes[j] <= t; j++)
                if(t % primes[j] == 0)
                {
                    B[cnt++] = primes[j];
                    while(t % primes[j] == 0)
                    {
                        t /= primes[j];
                        cnt2++;
                    }
                }
            if(t > 1) B[cnt++] = t, cnt2++;
            for(int j=0; j<cnt; j++)
            {
                t = goal[dot[i]/B[j]];
                if(t <= i && t != -1)
                {
                    if(cnt2 & 1) G[i].push_back(t);
                    else G[t].push_back(i);
                }
            }
        }
        nx = n, ny = n;
        printf("Case %d: %d\n",++ans,n - hc());

    }

    return 0;
}

 

转载于:https://www.cnblogs.com/WTSRUVF/p/9176304.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值