摆花解题报告


(一)题目大意

题目传送门

简化一下题意:

\(n\) 个数(\(x_1,x_2,...,x_n\)), \(0\leqslant x_i\leqslant a_i\),求有多少种方案数使\(\sum\limits_{i=1}^nx_i = m\)

(二)解题思路

乍一看,似乎题目有些复杂,一时找不到思路,肿么办!!!

方法一:搜索

没有思路当然就搜索啦 废话。如何搜索呢?

从 1 到 \(n\) 考虑每个 \(x_i\) 的值,和当前前 \(i\) 个数的总和 \(k\),然后枚举当前 \(x_i\) 所有可能的值,再递归求解。

时间复杂度 \(O(a_1\times a_2...\times a_n)\),明显超时,但可以拿部分分(30)嘛...

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn];
int dfs(int x,int k)
{
    if(k > m) return 0;
    if(k == m) return 1;
    if(x == n+1) return 0;
    int ans = 0;
    for(int i=0; i<=a[x]; i++) ans = (ans + dfs(x+1, k+i))%mod;
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    cout<<dfs(1,0)<<endl;
    return 0;
}

搜索超时怎么办!!! 别着急...

方法二(搜索优化法宝):记忆化

所谓记忆化,其实就是用一个数组将搜索过的值存起来,避免重复搜索,从而提高效率。(有必要可以上网搜一下,会搜索的应该很容易理解记忆化吧)

时间复杂度大概是:\(O(nm\times a_i)\) 吧,100%的数据稳过。

代码(其实只是改动了一点点):

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], rmb[maxn][maxn];
int dfs(int x,int k)
{
    if(k > m) return 0;
    if(k == m) return 1;
    if(x == n+1) return 0;
    if(rmb[x][k]) return rmb[x][k]; //搜过了就返回
    int ans = 0;
    for(int i=0; i<=a[x]; i++) ans = (ans + dfs(x+1, k+i))%mod;
    rmb[x][k] = ans; //记录当前状态的结果
    return ans;
}
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    cout<<dfs(1,0)<<endl;
    return 0;
}

但是搜索的时间有些不稳定,想要更稳定的算法有木有...

方法三:动态规划

记忆化搜索都可以转成动态规划,但是动态规划却不一定能转成记忆化搜索 ——\(by\) \(clg\)

定义状态:\(f(i, j)\) 表示前 \(i\) 个数总和为 \(j\) 的方案数。

那么,易得状态转移方程:\(f(i, j) = \sum\limits_{k=0}^{a_{i}}f(i-1,j-k)\)

其中, \(k\)是枚举当前第 \(i\) 个数的取值。

时间复杂度:\(O(nm\times a_i)\),稳得一批。

空间复杂度:\(O(nm)\)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[maxn][maxn];
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0][0] = 1;
    for(int i=1; i<=n; i++)
       for(int j=0; j<=m; j++)
           for(int k=0; k<=min(j, a[i]); k++)
              f[i][j] = (f[i][j] + f[i-1][j-k])%mod;
    cout<<f[n][m]<<endl;
    return 0;
}

仔细观察上述代码,有木有发现什么...

方法四(dp优化法宝):滚动数组

因为我们发现,状态转移方程中,当前状态 \(f(i, j)\)只跟 \(f(i-1, j)\) 有关系,与 \(i-2,i-3...\)无关。于是,我们可以利用滚动数组优化dp。

所谓滚动数组,其实就是只保留两个状态(当前状态和前一个状态),算完当前状态后,将当前状态变为前一个状态,再去算下一个状态,看上去就像二维数组的两层不断地迭代

时间复杂度:\(O(nm\times a_i)\)

空间复杂度:\(O(2m)\)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[2][maxn], t;
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0][0] = 1;
    for(int i=1; i<=n; i++)
    {
        t = 1-t; //滚动
        for(int j=0; j<=m; j++)
        {
            f[t][j] = 0; //注意初始化
            for(int k=0; k<=min(j, a[i]); k++)
              f[t][j] = (f[t][j] + f[1-t][j-k])%mod;
        }
    }
    cout<<f[t][m]<<endl;
    return 0;
}

看到上述dp代码,有木有感觉很熟悉...

这熟悉的优化方法... 这TM不就是个背包吗!!!

方法五(背包大法好):一维动态规划

通过观察上面的代码,二维数组,数组滚动优化空间......还有那熟悉的格式...

猛然发现这怎么可能不是背包呢(01背包)?

既然是背包,那么就可以为所欲为啦... [邪恶.jpg]

直接压成一维的01背包,跑一波,搞掂!!!

时间复杂度:\(O(nm\times a_i)\)

空间复杂度:\(O(m)\)

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=105, mod = 1000007;
int n, m, a[maxn], f[maxn];
int main()
{
    cin>>n>>m;
    for(int i=1; i<=n; i++) cin>>a[i];
    f[0] = 1;
    for(int i=1; i<=n; i++)
        for(int j=m; j>=0; j--) //注意,是01背包
            for(int k=1; k<=min(a[i], j); k++)
              f[j] = (f[j] + f[j-k])%mod;
    cout<<f[m]<<endl;
    return 0;
}

讲到这里,我也没有什么优化的方法了(可能是我太弱了),希望以上的解题思路和优化方法能对你有帮助。

(三)总结

总的来说,这道题适合 搜索/动态规划 的初学者练习。

有一点点的思维难度(起码不是那种无脑搜索、无脑dp的题)。

尤其是推到最后发现其实这道题是一道背包,将特殊问题的特殊模型转化成为了经典模型(01背包),这对于 OI 的学习是很有帮助的。

因为一道题真正有价值的解法,不是那些只适用当前问题的解法/模型,而是那些转化问题,变为一般数学模型的解法。

转载于:https://www.cnblogs.com/GDOI2018/p/10219410.html

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值