2015蓝桥杯省赛——叠骰子(第9题,DP)

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。

经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。


「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。


「样例输入」
2 1
1 2


「样例输出」
544


「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36


资源约定:
峰值内存消耗 < 256M

CPU消耗 < 2000ms


DP(动态规划):

将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。


#include<stdio.h>
#include<memory.h>

#define mod 1000000007

bool compact[7][7]; //compact[i][j]=false:点数为i的面与点数为j的面存在冲突
const int parner[7]={0,4,5,6,1,2,3}; //parner[i]=j:点数为i的面,其对立面的点数为j

int main()
{
	long long n; //骰子的高度;long型最大表示9位十进制数 
	int m; //冲突数组
	int s1,s2;
	scanf("%lld %d",&n,&m);
	
	memset(compact,true,sizeof(compact));
	for(int i=0;i<m;i++){
		scanf("%d%d",&s1,&s2);
		compact[s1][s2]=compact[s2][s1]=false; //这里想的挺好的 
	}
	
	long long dp[2][7]; //滚动数组,节约空间;dp[i][j]:高度为i,顶面点数为j的叠骰子方案数;
			    //这里忽略每个骰子可以四面转的情况,最后把方案数乘以(4^i)即可 
	long long c=4;
	int e=0; //滚动标志
	for(int i=1;i<7;i++)
		dp[e][i]=1;
 
	for(long long i=2;i<=n;i++)	{
		e = 1-e; //这里的e一直1,0翻转,实现数组的滚动 
		c = (c*4)%mod; //c= 4^i % mod
		for(int j=1;j<7;j++){
			dp[e][j]=0;
			for(int k=1;k<7;k++)
				if(compact[parner[j]][k]) //点数为j的对立面与点数k可以紧贴 
					dp[e][j] += dp[1-e][k]; //一直累加前一个骰子的结果数 
			dp[e][j] %= mod;
		}
	}
	
	int count=0;
	for(int i=1;i<7;i++)
		count = (count+dp[e][i])%mod;
	count = (count*c)%mod;
	
	printf("%d\n",count);
	
	return 0;
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值