赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 2000ms
DP(动态规划):
将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。
#include<stdio.h>
#include<memory.h>
#define mod 1000000007
bool compact[7][7]; //compact[i][j]=false:点数为i的面与点数为j的面存在冲突
const int parner[7]={0,4,5,6,1,2,3}; //parner[i]=j:点数为i的面,其对立面的点数为j
int main()
{
long long n; //骰子的高度;long型最大表示9位十进制数
int m; //冲突数组
int s1,s2;
scanf("%lld %d",&n,&m);
memset(compact,true,sizeof(compact));
for(int i=0;i<m;i++){
scanf("%d%d",&s1,&s2);
compact[s1][s2]=compact[s2][s1]=false; //这里想的挺好的
}
long long dp[2][7]; //滚动数组,节约空间;dp[i][j]:高度为i,顶面点数为j的叠骰子方案数;
//这里忽略每个骰子可以四面转的情况,最后把方案数乘以(4^i)即可
long long c=4;
int e=0; //滚动标志
for(int i=1;i<7;i++)
dp[e][i]=1;
for(long long i=2;i<=n;i++) {
e = 1-e; //这里的e一直1,0翻转,实现数组的滚动
c = (c*4)%mod; //c= 4^i % mod
for(int j=1;j<7;j++){
dp[e][j]=0;
for(int k=1;k<7;k++)
if(compact[parner[j]][k]) //点数为j的对立面与点数k可以紧贴
dp[e][j] += dp[1-e][k]; //一直累加前一个骰子的结果数
dp[e][j] %= mod;
}
}
int count=0;
for(int i=1;i<7;i++)
count = (count+dp[e][i])%mod;
count = (count*c)%mod;
printf("%d\n",count);
return 0;
}