一、一个人一生能阅读多少字节?
- 人类平均一生的有效阅读总量约在 3~5 GB 左右(以中文为例)。
- 这个数字仅相当于一个高清电影的大小,远比一般人直觉认为的要小很多。
原因:
- 每天真正有效阅读时间有限(约每天2小时左右)。
- 人的寿命和注意力有限,使得实际能够认真阅读的信息量并不大。
二、遗忘机制与长期记忆容量:
根据艾宾浩斯遗忘曲线,人在一天后即会忘记约 70% 以上信息,一个月后忘记约 80% 以上。
假如人的长期记忆保留比例约在**0.5%~2%**之间,这样计算,一生真正长期保留的有效信息仅为:
3.5GB × (0.5% ~ 2%) ≈ 20MB ~ 100MB
换句话说:
虽然一生阅读信息量达到 3~5 GB,但实际长期保留在大脑的“精炼知识”仅为 数十 MB 级别。
三、人脑的理论容量和存储方式:
人类大脑拥有约 860亿个神经元,形成约 100万亿 (10¹⁴) 个突触。
根据神经科学界的估算,每个突触存储大约 2 bit 信息,因此大脑物理上的理论存储上限约为:
10¹⁴ 突触 × 2 bit ≈ 25 TB
但注意:
- 大脑并非像电脑硬盘一样直接存储数据,而是通过突触连接的强弱,以一种模拟式、分布式、联想式的方式进行存储。
- 大脑存储的信息是经过高度抽象和压缩的,形成一种高效的“模式(pattern)”。
因此,真正长期记忆的信息量远小于25TB的物理理论上限(仅数十MB)。
四、人脑与7B大模型容量的对比:
以7B参数的大语言模型(例如LLaMA-7B)为例:
- 存储量为约 28 GB(70亿参数,每参数4字节)。
- AI模型的记忆是一种数学参数矩阵,完整精确存储所有细节,不进行语义抽象压缩,导致冗余度高。
对比表:
指标 | 人脑长期记忆 | 人脑理论最大容量 | 7B大模型 |
数量规模 | 数十 MB | 约25 TB | 约28 GB |
存储机制 | 模式抽象化 | 突触模拟信号 | 浮点数参数矩阵 |
存储效率 | 极高 | 极高 | 较低 |
信息类型 | 语义、抽象 | 原始信号强度 | 完整细节信息 |
存储方式 | 联想网络 | 联想网络 | 数学矩阵 |
功耗能耗 | 数十瓦 | 数十瓦 | 数百~数千瓦 |
小结:
- 大脑和大模型的“存储”本质不同:
- 大脑擅长抽象化、模式化存储,高效、能耗低,但不擅长存储大量细节。
- 大模型擅长细节精确存储,但存储冗余、低效,能耗巨大。
五、探讨与启发:
① 大脑的存储优势:
- 联想性与抽象性
人脑采用高效的模式压缩方式,将大量信息抽象为少量的模式,高效联想提取,这正是人脑的优势所在。
② 大脑的存储劣势:
- 精确细节记忆能力不足
因为大脑不断压缩和抽象,缺乏对原始细节信息的精确存储能力,导致大量细节容易遗忘。
③ AI大模型的优势:
- 精确存储细节信息
AI模型每个细节都能完整精确地存储并精确重现,这是目前人脑难以企及的能力。
④ AI大模型的不足:
- 存储方式低效、冗余度高
AI的存储方式不够抽象,数据冗余导致大量计算资源和能耗浪费,性能效率低。
六、未来发展的启示:
结合以上探讨,我们可以推测,AI未来的发展方向之一,可能就是:
将人脑的高效联想与抽象模式的存储方式融合到AI模型中,实现更高效、更节能的智能存储与处理机制。
可能的发展方向:
- 压缩模型参数
利用人脑抽象压缩原理,降低参数规模,提高存储和计算效率。 - 增强联想式存储与记忆
引入联想式记忆结构,让AI学习抽象模式与概念,而非简单的机械性记忆。 - 更节能的计算架构
借鉴人脑高效低能耗的运行机制,开发新型硬件架构,实现超低能耗的人工智能。
七、最终总结:
- 人的一生阅读数据量不多(3~5GB),长期记忆更少(数十MB)。
- 大脑理论容量巨大(25TB),但实际使用少之又少。
- 人脑和AI模型的存储机制截然不同,各有优势与不足。
- 未来人工智能的发展应当借鉴人脑的优势,提升AI的抽象、联想能力,改进效率和能耗。
通过对这些角度的深入分析与探讨,我们不仅能更好地理解自己,也能为人工智能的未来发展提供更多的启示。