利用java多线程技术往Elasticsearch导入千亿级数据

近期接到一个任务,需要改造现有从mysql往Elasticsearch导入数据MTE(mysqlToEs)小工具,由于之前采用单线程导入,千亿数据需要两周左右的时间才能导入完成,导入效率非常低。所以楼主花了3天的时间,利用java线程池框架Executors中的FixedThreadPool线程池重写了MTE导入工具,单台服务器导入效率提高十几倍(合理调整线程数据,效率更高)。

 

干货分享:利用java多线程技术往Elasticsearch导入千亿级数据

 

打开今日头条,查看更多图片

如果近期有往es导入数据的同学,可以从github上下载。

 

传送门:

 

https://github.com/dunzung/mte

关键技术栈

Elasticsearch

jdbc

ExecutorService\Thread

sql

工具说明

maven依赖

 

<dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <version>${mysql.version}</version>

</dependency>

<dependency>

 <groupId>org.elasticsearch</groupId>

 <artifactId>elasticsearch</artifactId>

 <version>${elasticsearch.version}</version>

</dependency>

<dependency>

 <groupId>org.elasticsearch.client</groupId>

 <artifactId>transport</artifactId>

 <version>${elasticsearch.version}</version>

</dependency>

<dependency>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 <version>${lombok.version}</version>

</dependency>

<dependency>

 <groupId>com.alibaba</groupId>

 <artifactId>fastjson</artifactId>

 <version>${fastjson.version}</version>

</dependency>

java线程池设置

 

默认线程池大小为21个,可调整。其中POR为处理流程已办数据线程池,ROR为处理流程已阅数据线程池。

 

干货分享:利用java多线程技术往Elasticsearch导入千亿级数据

 

private static int THREADS = 21;

public static ExecutorService POR = Executors.newFixedThreadPool(THREADS);

public static ExecutorService ROR = Executors.newFixedThreadPool(THREADS);

定义已办生产者线程/已阅生产者线程:ZlPendProducer/ZlReadProducer

 

public class ZlPendProducer implements Runnable {

 ...

 @Override

 public void run() {

 System.out.println(threadName + "::启动...");

 for (int j = 0; j < Const.TBL.TBL_PEND_COUNT; j++)

 try {

 ....

 int size = 1000;

 for (int i = 0; i < count; i += size) {

 if (i + size > count) {

 //作用为size最后没有100条数据则剩余几条newList中就装几条

 size = count - i;

 }

 String sql = "select * from " + tableName + " limit " + i + ", " + size;

 System.out.println(tableName + "::sql::" + sql);

 rs = statement.executeQuery(sql);

 List<HistPendingEntity> lst = new ArrayList<>();

 while (rs.next()) {

 HistPendingEntity p = PendUtils.getHistPendingEntity(rs);

 lst.add(p);

 }

 MteExecutor.POR.submit(new ZlPendConsumer(lst));

 Thread.sleep(2000);

 }

 ....

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

public class ZlReadProducer implements Runnable {

 ...已阅生产者处理逻辑同已办生产者

}

定义已办消费者线程/已阅生产者线程:ZlPendConsumer/ZlReadConsumer

 

public class ZlPendConsumer implements Runnable {

 private String threadName;

 private List<HistPendingEntity> lst;

 public ZlPendConsumer(List<HistPendingEntity> lst) {

 this.lst = lst;

 }

 @Override

 public void run() {

 ...

 lst.forEach(v -> {

 try {

 String json = new Gson().toJson(v);

 EsClient.addDataInJSON(json, Const.ES.HistPendDB_Index, Const.ES.HistPendDB_type, v.getPendingId(), null);

 Const.COUNTER.LD_P.incrementAndGet();

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("err::PendingId::" + v.getPendingId());

 }

 });

 ...

 }

}

public class ZlReadConsumer implements Runnable {

 //已阅消费者处理逻辑同已办消费者

}

定义导入Elasticsearch数据监控线程:Monitor

 

监控线程-Monitor为了计算每分钟导入Elasticsearch的数据总条数,利用监控线程,可以调整线程池的线程数的大小,以便利用多线程更快速的导入数据。

 

public void monitorToES() {

 new Thread(() -> {

 while (true) {

 StringBuilder sb = new StringBuilder();

 sb.append("已办表数::").append(Const.TBL.TBL_PEND_COUNT)

 .append("::已办总数::").append(Const.COUNTER.LD_P_TOTAL)

 .append("::已办入库总数::").append(Const.COUNTER.LD_P);

 sb.append("~~~~已阅表数::").append(Const.TBL.TBL_READ_COUNT);

 sb.append("::已阅总数::").append(Const.COUNTER.LD_R_TOTAL)

 .append("::已阅入库总数::").append(Const.COUNTER.LD_R);

 if (ldPrevPendCount == 0 && ldPrevReadCount == 0) {

 ldPrevPendCount = Const.COUNTER.LD_P.get();

 ldPrevReadCount = Const.COUNTER.LD_R.get();

 start = System.currentTimeMillis();

 } else {

 long end = System.currentTimeMillis();

 if ((end - start) / 1000 >= 60) {

 start = end;

 sb.append("\n#########################################\n");

 sb.append("已办每分钟TPS::" + (Const.COUNTER.LD_P.get() - ldPrevPendCount) + "条");

 sb.append("::已阅每分钟TPS::" + (Const.COUNTER.LD_R.get() - ldPrevReadCount) + "条");

 ldPrevPendCount = Const.COUNTER.LD_P.get();

 ldPrevReadCount = Const.COUNTER.LD_R.get();

 }

 }

 System.out.println(sb.toString());

 try {

 Thread.sleep(3000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }).start();

}

初始化Elasticsearch:EsClient

 

String cName = meta.get("cName");//es集群名字

String esNodes = meta.get("esNodes");//es集群ip节点

Settings esSetting = Settings.builder()

 .put("cluster.name", cName)

 .put("client.transport.sniff", true)//增加嗅探机制,找到ES集群

 .put("thread_pool.search.size", 5)//增加线程池个数,暂时设为5

 .build();

String[] nodes = esNodes.split(",");

client = new PreBuiltTransportClient(esSetting);

for (String node : nodes) {

 if (node.length() > 0) {

 String[] hostPort = node.split(":");

 client.addTransportAddress(new TransportAddress(InetAddress.getByName(hostPort[0]), Integer.parseInt(hostPort[1])));

 }

}

初始化数据库连接

 

conn = DriverManager.getConnection(url, user, password);

启动参数

 

nohup java -jar mte.jar ES-Cluster2019 192.168.1.10:9300,192.168.1.11:9300,192.168.1.12:9300 root 123456! jdbc:mysql://192.168.1.13

:3306/mte 130 130 >> ./mte.log 2>&1 &

参数说明

 

ES-Cluster2019 为Elasticsearch集群名字

 

192.168.1.10:9300,192.168.1.11:9300,192.168.1.12:9300为es的节点IP

 

130 130为已办已阅分表的数据

 

程序入口:MteMain

 

干货分享:利用java多线程技术往Elasticsearch导入千亿级数据

 

// 监控线程

Monitor monitorService = new Monitor();

monitorService.monitorToES();

// 已办生产者线程

Thread pendProducerThread = new Thread(new ZlPendProducer(conn, "ZlPendProducer"));

pendProducerThread.start();

// 已阅生产者线程

Thread readProducerThread = new Thread(new ZlReadProducer(conn, "ZlReadProducer"));

readProducerThread.start();

小试牛刀

 

干货分享:利用java多线程技术往Elasticsearch导入千亿级数据

 

干货分享:利用java多线程技术往Elasticsearch导入千亿级数据

 

转载于:https://www.cnblogs.com/lishiqi-blog/p/11181707.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值