【爬爬爬起来】PyautoGUI离线安装

本文介绍在无法连接互联网的Windows环境下,如何通过离线安装方式部署Python库PyAutoGUI及其依赖项。针对安装过程中遇到的错误提供了具体的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、系统环境

二、安装步骤

1. 下载离线安装文件

2. 下载离线依赖包

3. 安装依赖包

4. 报错处理

总结


前言

因为种种原因,又回归代码的怀抱了,既然搞python肯定绕不开爬虫,那么就爬爬爬起来吧。公司内网环境不能连接互联网,本来简简单单的pip命令行也要折腾一下,于是有了本文的工作笔记,简单介绍离线安装的步骤和一个小坑的解决方法。


一、系统环境

        操作系统:windows10 64位

        IDE环境:Anaconda Jupyter Notebook

        Python版本:python 3.7.6

二、安装步骤

         如果下边这段代码你能直接运行,这篇文章跟你没啥关系了,实名羡慕能连外网的你!!

pip install pyautogui

1. 下载离线安装文件

        在pypi上下载pyautogui离线包:

        https://pypi.org/project/PyAutoGUI/#file

2. 下载离线依赖包

离线安装pyautogui需要三个模块,PyPI原文如下:

话不多说,放链接给大家:

3. 安装依赖包

打开Anaconda Prompt,进入解压后的依赖包文件夹,运行命令行:

python setup.py install

4. 报错处理

离线安装时出现如下报错:

这个报错在Linux下手到擒来,直接在解压文件夹下运行如下命令即可:

touch 'find . -type f'

windows10环境下touch命令无效,于是换了个思路,找了台Ubuntu系统,把所有的tar.gz包解压后,用touch命令跑完,重新打包,传回win10环境。搞定!!


 总结

以上就是今天要记录分享的内容,本文简单介绍了离线安装pyautogui的步骤,提供一个解决bug报错的思路。

<think>好的,用户想了解如何用爬虫从古诗文网抓取数据的教程。首先,我需要回忆之前用户提供的引用内容,里面有四个相关引用,涉及到爬取唐诗三百首、数据可视化、登录分析和验证码处理。这些信息应该能帮助构建一个完整的回答。 用户的问题是关于抓取古诗文网的数据,所以需要分步骤讲解。首先,可能需要分析目标网站的结构,确定要爬取的数据在哪里,比如诗歌的标题、作者、朝代、正文等。然后,要考虑如何发送请求,处理可能的反爬机制,比如验证码,这在引用[4]里提到过。引用[1]和[3]提到存储到CSV文件,并进行数据清洗和可视化,这些步骤也需要包含在内。 接下来,我需要组织回答的结构,按照逻辑顺序:准备工作、页面分析、数据抓取、数据存储、数据清洗、可视化、注意事项。每个部分要简明扼要,同时提供代码示例,比如使用requests和BeautifulSoup库,以及处理分页的方法。同时要提到处理动态加载的问题,可能涉及到Selenium,但用户提供的引用中没有提到,可能需要根据常识补充,或者根据引用[4]提到的验证码处理,说明可能需要处理登录的情况。 还需要注意引用来源,比如在提到存储到CSV和分词时引用[1],在分析登录入口时引用[2],在解决验证码时引用[4]。此外,要确保回答中的LaTeX格式正确,比如变量用$包裹,但在这个问题中可能数学公式较少,可能不需要太多LaTeX,但如果有变量名的话需要注意。 然后,生成相关问题,可能需要考虑爬虫的合法性、反爬措施、数据清洗的具体方法、可视化的其他方式,以及如何处理验证码等。这些问题应该与用户的需求相关,并且基于提供的引用内容。 最后,检查回答是否符合系统级指令,比如使用中文,结构清晰,正确引用,代码格式正确,没有用户不可见的内容,以及生成相关问题。同时确保LaTeX语法正确,尽管在这个回答中可能用到的较少,但如果有的话要正确使用。</think>### 使用Python爬虫抓取古诗文网数据的分步教程 #### 一、准备工作 1. 安装依赖库:需使用$requests$发送请求,$BeautifulSoup$解析页面,$pandas$存储数据,$jieba$分词 ```python pip install requests beautifulsoup4 pandas jieba wordcloud ``` 2. 目标网站分析:古诗文网(https://so.gushiwen.cn)采用静态页面结构,但部分内容需登录后访问[^2][^4] #### 二、页面结构分析(以《唐诗三百首》页面为例) 1. 列表页特征:https://so.gushiwen.cn/gushi/tangshi.aspx 包含古诗标题、作者、朝代和详情页链接 2. 详情页结构:通过列表页获取的链接可访问具体诗歌页面,包含$div$标签包裹的正文、注释等内容[^1] 3. 登录机制:部分内容需要处理验证码和Cookie验证 #### 三、核心代码实现 ```python import requests from bs4 import BeautifulSoup import csv # 1. 获取列表页数据 def get_list(url): headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') poems = [] for item in soup.select('.sons'): link = item.find('a')['href'] title = item.find('b').text.strip() author = item.select('.source a')[0].text dynasty = item.select('.source a')[1].text poems.append({'title':title, 'author':author, 'dynasty':dynasty, 'link':'https://so.gushiwen.cn'+link}) return poems # 2. 获取详情页正文 def get_detail(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') content = soup.select('.contson')[0].text.replace('<br>','\n') return content.strip() # 3. 数据存储 def save_to_csv(data): with open('poems.csv', 'w', newline='', encoding='utf-8') as f: writer = csv.DictWriter(f, fieldnames=['title','author','dynasty','content']) writer.writeheader() for item in data: item['content'] = get_detail(item['link']) writer.writerow(item) ``` #### 四、数据处理与可视化 1. **数据清洗**:使用正则表达式去除HTML标签 ```python import re def clean_text(text): return re.sub(r'<[^>]+>', '', text) ``` 2. **词云生成**:基于引用[1]的实现方案 ```python from wordcloud import WordCloud import jieba def generate_wordcloud(): df = pd.read_csv('poems.csv') text = ''.join(df['content'].tolist()) words = ' '.join(jieba.cut(text)) wc = WordCloud(font_path='simhei.ttf', background_color='white') wc.generate(words) wc.to_file('wordcloud.png') ``` #### 五、关键注意事项 1. 请求频率控制:建议添加$time.sleep(1)$避免触发反爬 2. 验证码处理:需要集成OCR识别或手动输入机制 3. 动态内容加载:部分页面可能使用JavaScript渲染,需改用$selenium$库
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值