EOJ 3507 坑爹的售票机

问题描述

oxx 和 xjj 决定和小伙伴们一同坐船前往 Xiamen。去 Xiamen 的船票一张 p 元。

当他们满怀兴致地来到港口时发现居然只有不设找零的自动售票机,只能使用一元,五元,十元,二十元,五十元,一百元的纸币,且一次至多买 k 张船票。因此他们不得不去银行取钱。而 oxx 是个大懒人,他希望取的纸币数量越少越好,因此他想知道他们一行 n 人要都买到票至少需要取多少张纸币。
Input

第一行三个整数 n,k,p (1≤n≤103,1≤k≤10,1≤p≤103) 分别表示 oxx 需要购买船票张数,一次至多买船票数量,单张船票价格。
Output

输出一个整数,表示 oxx 至少要取多少张纸币。

题意即为:取钱n*p元,而一次至多取k张,问怎么取,使总共取的纸币张数最少

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #define INF 10e8
 4 #define C 1001
 5 const int m[6]={1,5,10,20,50,100};
 6 int min(int a,int b){return a>b?b:a;}
 7 int main()
 8 {
 9     int n,k,p,dp[C]={0},item[11]={0};
10     scanf("%d%d%d",&n,&k,&p);
11     for(int i=1;i<=k;i++)
12     {
13         int money=i*p;
14         for(int j=5;j>=0;j--)
15         {
16             item[i]+=money/m[j];
17             money%=m[j];
18         }
19     }
20     for(int i=n;i>=1;i--)dp[i]=INF;
21     for(int i=1;i<=k;i++)
22         for(int j=i;j<=n;j++)
23             dp[j]=min(dp[j-i]+item[i],dp[j]);
24 
25     printf("%d\n",dp[n]);
26 
27     return 0;
28 }

首先求出买1-k张票需要多少张纸币,存入item数组中,

其中,下标i表示买i张票,item[i],表示买一张票所需的张数,dp数组的下标i表示一共买i张票,dp[i]表示买i张票需要的最小纸币数

这样就转化成了完全背包问题
  有k种物品,每种物品都有无限个可取,每种物品i的价值是item[i],容量是i,要求恰好放入一个容量为n的背包中,价值最小是多少?

因为要求价值最小,所以一开始便将dp数组每个元素初始化为INF。

状态转移方程就可以解释为:买j张票所需要的最小纸币张数,是“买[j-i]张票所需要的最小纸币张数加买i张票所需要的最小纸币张数”,与“买j张票所需要的最小纸币张数”这两者中的最小值。

21,22行的循环顺序以及一维数组的应用是一个空间优化,具体含义并不明确,只是套了个模板,有待学习。

转载于:https://www.cnblogs.com/Jiiiin/p/8590980.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值