题解:首先可以贪心直接计算出对于每次买 i 张最少所需要的纸币数,这样就转换为一个背包问题。Hard 由于 n 太大,不能直接 DP。
但 k 较小,因此 2520 张票的最优解一定为通过性价比最高的方式买。因此最终答案为 DP 算到 min(n,nmod2520+2520)(每种买票方式需要通过 DP 算的最多不超过 2520 张,若超过 2520 张则这 2520 张可以按性价比最优方式买,因此最多 DP 到 k!k 即可),再加上剩余若干份 2520 张票。卡了几个假得不行的算法,优秀的假算法可能也能过……
验题人野鸡解法:大部分票肯定是 m (1≤m≤k) 张一买的,枚举 m。然后,剩下的票直接 DP 算。大部分是多少呢?就取 n−1000 好了。证明?不会……
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int N=1e6+7;
const ll inf=1e18;
ll dp[N];
ll num[15],cnt[15];
ll init(ll x)
{
ll res=0;
if(x>=100) res+=x/100,x%=100;
if(x>=50) res+=x/50,x%=50;
if(x>=20) res+=x/20,x%=20;
if(x>=10) res+=x/10,x%=10;
if(x>=5) res+=x/5,x%=5;
if(x>=1) res+=x;
return res;
}
int main()
{
//yyy_3y
ll n,k,p; scanf("%lld%lld%lld",&n,&k,&p);
ll lcm=1;
for(ll i=2;i<=k;i++) lcm=lcm*i/__gcd(lcm,i);
for(int i=1;i<=k;i++){
num[i]=i;
cnt[i]=init(i*p);
}
for(int i=1;i<N;i++) dp[i]=inf;
dp[0]=0;
for(int i=1;i<=k;i++){
for(int j=num[i];j<=lcm;j++){
dp[j]=min(dp[j],dp[j-num[i]]+cnt[i]);
}
}
ll mi=dp[lcm];
ll res=0;
if(n>=2*lcm){
res+=(n/lcm-1)*mi;
n=n%lcm+lcm;
}
for(int i=1;i<N;i++) dp[i]=inf;
dp[0]=0;
for(int i=1;i<=k;i++){
for(int j=num[i];j<=n;j++){
dp[j]=min(dp[j],dp[j-num[i]]+cnt[i]);
}
}
printf("%lld\n",dp[n]+res);
return 0;
}