好久没写博客了,最近刚创了个洛谷账号,P1002有意思啊,过河卒

洛谷P1002

题面就不贴了吧,第一眼看直接是暴力深搜。

结果直接T了

然后看了一下,考虑了时间复杂度太高了,还有也没有很有效的剪枝。

贴一下我的dfs

 

#include <iostream>
using namespace std;
int n, m, a, b;
int dir1[8] = 
{
    1,1,2,2,-1,-1,-2,-2};
    int dir2[8] = 
{2,-2,1,-1,2,-2,1,-1};
long long ans;
int mp[30][30];
void dfs(int x, int y)
{
     if(x>n||y>m)
    return ;
    if(mp[x][y]==1)
    return ;
    if(x==n&&y==m)
    {
        ans++;
        return ;
    }

    
        dfs(x+1, y);
        dfs(x, y+1);
    
}
int main()
{
    
    cin >> n >> m >> a >> b;
    mp[a][b]=1;
    for(int i=0;i<8;i++)
    {
        int dx = a + dir1[i];
        int dy = b + dir2[i];
        mp[dx][dy] = 1;
    }
    dfs(0, 0);
    cout << ans << endl;
}
View Code

 

然后我查了一下别人的代码,对啊!动态规划啊!到(x,y)只能是从(x-1,y)或者(x,y-1)啊。

F[I,J]=0{G[I,J]=1}
F[I,0]=F[I-1,0]{I>0,G[I,0]=0}
F[0,J]=F[0,J-1]{J>0,G[0,J]=0}

然后一发。

动态规划还是牛逼啊。

#include <iostream>
using namespace std;
int n, m, a, b;
int dir1[8] = 
{1,1,2,2,-1,-1,-2,-2};
    int dir2[8] = 
{2,-2,1,-1,2,-2,1,-1};
long long dp[30][30];
int mp[30][30];

int main()
{
    
    cin >> n >> m >> a >> b;
    mp[a][b]=1;
    for(int i=0;i<8;i++)
    {
        int dx = a + dir1[i];
        int dy = b + dir2[i];
        mp[dx][dy] = 1;
    }
    for(int i=0;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            if(mp[i][j]==1)
            {
                dp[i][j] = 0;
                
            }
            else
            {
                if(i==0&&j==0)
                {
                    dp[i][j] = 1;
                    continue;
                }
                if(i==0)
                {
                    dp[i][j] = dp[i][j-1];
                    continue;
                }
                if(j==0)
                {
                    dp[i][j] = dp[i-1][j];
                    continue;
                }
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        
    }
    cout << dp[n][m] << endl;
}
View Code

 

转载于:https://www.cnblogs.com/jmzIT/p/10669431.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值