ICLR2022 GNN 图神经网络 论文阅读 (二) 泛读 (9-10)

论文列表

目前找了录用的一些有关于Graph或者GNN的文章,先过一遍各个文章的摘要,然后再花时间对觉得比较重要或者有趣的文章进行详细阅读。

在这里插入图片描述

Paper 9:

在这里插入图片描述

摘要简介

  • 当下缺乏分析任意GNN的理论工具。
  • 我们提出了一个和WL一样可以区分graphs的方法来分析GNN。
  • 该方法基于一种procedural tensor language,相当于在语言层面上对GNN进行解析,进而对每一层GNN所需要的计算量进行分析,包括索引数量,求和的深度。
  • 我们用这种tensor language重新定义了k-MPNN(k order Message-Passing Neural Networks)。
  • 另外,可以用这种tensor语言来推导出多种GNN的universal approximation 的能力。
  • 用这个方法,无需知道WL-test的细节。
  • 我们还提供了一些如何增强GNN区分graphs的insights

实验

没有做实验,纯理论的文章。

分析

没有细看,全是新的定义和公式,我理解就是用一个过程语言去描述了GNN的推理过程。

Paper 10:

在这里插入图片描述

摘要简介

  • MPNNs因为其简单和可扩展性,在graph data上很受欢迎。
  • 但是其表达能力有也局限。
  • 提出了一个Equivariant Subgraph Aggregation Networks (ESAN)来解决。
  • MPNN有时候不能区别两个graph,虽然这两个graph的subgraph是有区别的。
  • 所以,可以基于预先设置好的一些策略来将一个graph表示为多个subgraph的集合
  • 提出了一个1-WL的变种,并在其上理论证明了ESAN的表达能力比MPNN好。
  • 理论证明了这些subgraph选择策略和equivariant neural 架构如何影响架构的表达能力。
  • 为了解决计算复杂度问题,提出了一个subgraph sampling的策略。
  • 真实数据和人工数据都表明我们这个方法好,并且可以提升很多GNN的性能。

架构

在这里插入图片描述

实验

也在OGB上比较了,拿了GIN最为底层GNN,然后套上新策略。

看起来方差比较大。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值