- 欢迎关注WX公众号,每周发布论文解析:PaperShare,
点我关注
论文列表
目前找了录用的一些有关于Graph或者GNN的文章,先过一遍各个文章的摘要,然后再花时间对觉得比较重要或者有趣的文章进行详细阅读。
Paper 9:
摘要简介
- 当下缺乏分析任意GNN的理论工具。
- 我们提出了一个和WL一样可以区分graphs的方法来分析GNN。
- 该方法基于一种procedural tensor language,相当于在语言层面上对GNN进行解析,进而对每一层GNN所需要的计算量进行分析,包括索引数量,求和的深度。
- 我们用这种tensor language重新定义了k-MPNN(k order Message-Passing Neural Networks)。
- 另外,可以用这种tensor语言来推导出多种GNN的universal approximation 的能力。
- 用这个方法,无需知道WL-test的细节。
- 我们还提供了一些如何增强GNN区分graphs的insights
实验
没有做实验,纯理论的文章。
分析
没有细看,全是新的定义和公式,我理解就是用一个过程语言去描述了GNN的推理过程。
Paper 10:
摘要简介
- MPNNs因为其简单和可扩展性,在graph data上很受欢迎。
- 但是其表达能力有也局限。
- 提出了一个Equivariant Subgraph Aggregation Networks (ESAN)来解决。
- MPNN有时候不能区别两个graph,虽然这两个graph的subgraph是有区别的。
- 所以,可以基于预先设置好的一些策略来将一个graph表示为多个subgraph的集合。
- 提出了一个1-WL的变种,并在其上理论证明了ESAN的表达能力比MPNN好。
- 理论证明了这些subgraph选择策略和equivariant neural 架构如何影响架构的表达能力。
- 为了解决计算复杂度问题,提出了一个subgraph sampling的策略。
- 真实数据和人工数据都表明我们这个方法好,并且可以提升很多GNN的性能。
架构
实验
也在OGB上比较了,拿了GIN最为底层GNN,然后套上新策略。
看起来方差比较大。