三分钟教你Qwen大模型创建多语言聊天和翻译应用,附源码!

随着全球化进程的加速,跨语言跨文化的交流和沟通越来越重要。如今,借助先进的AI技术,像Qwen 2 LLM这样的大语言模型,可以帮助快速开发出支持多语言的应用。

使用Qwen 2 LLM构建一个支持英语、中文、日语等多种语言的应用程序,并且可根据需求添加更多语言,借助Hugging Face的transformers库来处理翻译任务,使用Gradio构建用户界面,以及通过Google Colab来运行应用。

获取Qwen 2 LLM模型

在Hugging Face的模型库中可以获取Qwen 2 LLM模型。这个功能强大的模型覆盖了多种自然语言处理任务,无论是翻译还是聊天,都能轻松应对。

图片

步骤1:安装所需库

要使用Qwen 2 LLM构建翻译和聊天应用,首先安装必要的库。这些包括用于模型加速、文本转语音转换和在Google Colab中直接创建交互式Web界面的工具。

!pip install accelerate gTTS gradio transformers

步骤2:设置库和模型

搭建翻译聊天应用,得先配置好环境,把需要的库和模型导入进来。下面是初始化的步骤:

导入库:导入处理模型、创建用户界面和文本转语音功能所需的基本库。

from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import torch
from gtts import gTTS
import os

步骤3:为模型推理配置设备

根据硬件可用性设置模型推理的设备:

device = "cuda" if torch.cuda.is_available() else "cpu"

步骤4:加载语言模型

加载Qwen 2 LLM及其分词器,以处理翻译和聊天任务:

language_model_name = "Qwen/Qwen2-1.5B-Instruct"
language_model = AutoModelForCausalLM.from_pretrained(language_model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(language_model_name)

步骤5:处理翻译或聊天的输入

定义一个函数来根据选定的操作处理用户输入,无论是翻译还是聊天。

def process_input(input_text, action):
    if action == "翻译成英语":
        prompt = f"请将以下文本翻译成英语:{input_text}"
        lang = "en"
    elif action == "翻译成中文":
        prompt = f"请将以下文本翻译成中文:{input_text}"
        lang = "zh-cn"
    elif action == "翻译成日语":
        prompt = f"请将以下文本翻译成日语:{input_text}"
        lang = "ja"
    else:
        prompt = input_text
        lang = "en"
    messages = [
        {"role": "system", "content": "你是一个乐于助人的AI助手。"},
        {"role": "user", "content": prompt}
    ]
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)
    generated_ids = language_model.generate(
        model_inputs.input_ids,
        max_new_tokens=512
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    output_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return output_text, lang

步骤6:将文本转换为语音

实现一个函数,将生成的文本转换为语音:

def text_to_speech(text, lang):
    tts = gTTS(text=text, lang=lang)
    filename = "output_audio.mp3"
    tts.save(filename)
    return filename

步骤7:处理用户交互

创建一个函数来通过处理输入和将输出转换为语音来管理用户交互:

def handle_interaction(input_text, action):
    output_text, lang = process_input(input_text, action)
    audio_filename = text_to_speech(output_text, lang)
    return output_text, audio_filename

步骤8:定义操作选项

指定用户可用的操作:

action_options = ["翻译成英语", "翻译成中文", "翻译成日语", "聊天"]

步骤9:创建Gradio界面

使用Gradio设置用户界面,与你的应用交互:

iface = gr.Interface(
    fn=handle_interaction,
    inputs=[
        gr.Textbox(label="输入文本"),
        gr.Dropdown(action_options, label="选择操作")
    ],
    outputs=[
        gr.Textbox(label="输出文本"),
        gr.Audio(label="输出音频")
    ],
    title="使用AI的翻译和聊天应用",
    description="根据选定的操作翻译输入文本或进行聊天。",
    theme= "gradio/soft"
)


步骤10:启动界面

启动Gradio界面并使其在线可访问:

图片

if __name__ == "__main__":
    iface.launch(share=True)

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值