哈佛医学院将生成式人工智能纳入课程和临床实践,以培训下一代医生

How Generative AI Is Transforming Medical Education | Harvard Medicine Magazine

前言

最近哈佛医学院发表了不少医学大模型方面的成果和论文,哈佛医学院正在将其课程中融入人工智能,以培养下一代医生,利用生成式AI来改进医学教育、研究和管理,但同时也强调了批判性思维和对AI局限性的认识的重要性。

总结要点:

* 哈佛医学院正在将生成式人工智能(GenAI)融入其课程中,以应对医学教育的变革。哈佛医学院开设了关于人工智能医疗保健的入门课程,并设立了专注于人工智能医学的博士项目。

* GenAI在医学知识和临床推理测试中的表现超过了医学生、住院医师甚至执业医师。

* 该学院还设立了奖项,以资助在教育、研究和管理中使用人工智能的项目。

* 哈佛医学院附属医院也正在将AI整合到临床工作流程中,例如使用环境记录工具来减少医生的文书工作,从而腾出更多时间与病人互动。

* 虽然AI可以提高效率并减少错误,但批判性思维和对AI局限性的认识仍然至关重要,因为AI容易出现偏差并可能无法进行复杂的推理。

* 未来成功的医生和研究人员将能够利用GenAI进行创新和战略规划。

AI in Clinical Medicine | Continuing Education Catalog

https://cmecatalog.hms.harvard.edu/ai-clinical-medicine

最近课程简介

正文

在 2022 年 11 月公开推出后的几周内,ChatGPT 已经开始变得无处不在,MMSc '05 的 Bernard Chang 正在思考这对医学教育的未来意味着什么。“也许每隔几十年就会发生一次真正的革命,我们教医学生的方式以及我们希望他们成为医生后能够做什么,”HMS 医学教育院长 Chang 说。“这是那个时代之一。”

到 2023 年,研究发现 ChatGPT 的初始公开版本可以在美国医学执照考试中达到及格水平。2023 年 3 月发布的更强大的 ChatGPT 版本,在医学知识和临床推理的一些测试中超过了医学生、住院医师甚至执业医师的表现,如今有许多与 ChatGPT 能力相匹配的大型语言模型。那么,这将如何影响当今的医学生以及教育他们的机构呢?

Chang 说,医学教育的上一次此类革命发生在 1990 年代中期,当时互联网变得广泛可及。“最初我们只是在上面玩游戏,”他说。“但它很快就变得不可或缺,这就是现在生成式 AI 的情况。几年内,它将被内置到所有东西中。

_Bernard Chang-_张伯纳

HMS 通过将生成式 AI(也称为 GenAI)构建到今天的课程中,在这一转变中取得了飞跃。“现在是响应这个变化的时候了,”Chang 说。“我们没有退缩,等待看看其他学校在做什么,这既是因为作为一个机构,我们希望站在这方面的最前沿,也因为这是为我们的学生做的正确事情。”

整合 AI

今年秋季纳入的变化包括为健康科学与技术 (HST) 课程的所有新生开设为期一个月的医疗保健人工智能入门课程。“我不知道有任何其他医学院这样做,”Chang 说。“第一个月肯定不会。”他补充说,该课程研究了人工智能在医学中的最新用途,批判性地评估了其在临床决策中的局限性,至关重要的是,“让学生认识到医学未来将有所不同。在这个时代,如果他们想成为一名医师科学家或医师工程师,这是 HST 课程的目标,他们不仅需要成为一个好的倾听者、一个好的医学面试官和一个好的床边医生。他们还需要良好的数据技能、AI 技能和机器学习技能。每年大约有 30 名学生注册 HST 课程,其中许多人除了获得 MD 之外,还将获得硕士学位或博士学位。

本学期开始的博士课程 AI in Medicine (AIM) 正在进一步推动 AI 集成教育。“生物信息学专业的学生越来越多地表示他们对人工智能感到兴奋,并询问我们是否可以提供人工智能博士学位,”HMS 布拉瓦尼克研究所生物医学信息学教授兼系主任 Isaac Kohane 说。“我们不知道会有多少需求,但我们最终为我们提供的 7 个名额收到了 400 多份申请。”

“与任何重大技术爆发一样,”Kohane 说,“几年内,劳动力将出现巨大缺口。因此,我们希望培养对医学非常了解并了解医疗保健中可以通过 AI 解决的实际问题的研究人员。

同样为此,HMS 为对该技术感兴趣的医学生和教职员工开辟了第三条途径:去年宣布的 Dean’s Innovation Awards for the Use of Artificial Intelligence in Education, Research, and Administration,为每个选定的项目提供高达 100,000 美元的赠款(参见“推进医学教育创新,“ 下面)。这些赠款真正表明 HMS 在尝试将这些令人惊叹的新工具集成到我们的工作和学习方式方面处于领先地位,“医学博士生 Arya Rao 说,她是研究 AI 用于临床培训的奖项的共同获得者。“我很感激能将这段经历带入我的医疗事业。”

Arya Rao艾莉亚·拉奥

HMS 附属医院也将 AI 纳入其临床工作流程。例如,布莱根妇女医院 (Brigham and Women’s Hospital) 正在测试使用一种环境记录工具,该工具可以记录临床记录,以便医生可以花更多时间与患者互动。Chang 说,随着这些工具的实施,它们将使学生能够专注于与患者交谈,“而不是不断地转身看屏幕。它还将帮助他们更快地转向更高水平的学习和更高级的主题以及我们希望医生做的事情,比如倾听。

“GenAI 通常被视为将人力从日程沟通中抽离出来,”研究生教育办公室负责教育奖学金和创新事务的助理院长 Taralyn Tan 说。“但实际上,我认为这是一种机制,通过减轻医生的许多行政任务的负担,将人为因素重新纳入临床实践。”

Taralyn Tan__陈淑娴

Rao表示同意。“医学的真正美妙之处,即从事医学的原因,是你能够与患者建立纽带,”她说。“如果你看看医生花在翻阅病历和写笔记上的时间,那是每天几个小时。AI 可以腾出一些时间,这样我们就可以将其投入到我们真正存在的目的上,即帮助人们。

学习环境指导委员会主席、Ellen 和 Melvin Gordon 医学教育杰出教授理查德·施瓦茨斯坦 (Richard Schwartzstein) 看到了将记录保存和其他此类职责集中起来的价值,但他警告说,人工智能使用过分可能会导致学生的准备不足。“我们需要通过强调推理和批判性思维,将其置于现实世界的床边医学以及您作为医生的工作方式的背景下,”Schwartzstein 说。“床边临床医生用它来做什么?临床医生必须警惕什么?临床医生还需要擅长什么才能正确使用 AI?

例如,Schwartzstein 指出,AI 可以帮助医生追踪来自世界各地患者可能接触过但医生不熟悉的地方的病原体。“我现在只需通过互联网就可以做到这一点,”他说,“但 AI 可以进行更广泛、更快速的搜索。不过,缺点之一是它不会告诉你它正在查看哪些来源,因此你无法确定信息是否来自你信任的期刊。

Richard Schwartzstein 理查德·施瓦茨斯坦

他说,仔细检查 AI 的结果很关键,能够将它提供的选项与患者的实际症状和病史相匹配也是如此。“AI 不擅长解决问题,这是医学中最困难的部分之一,”Schwartzstein 指出。HMS 和 Beth Israel Deaconess Medical Center 的研究人员的一项研究发现,尽管 ChatGPT 在诊断时是准确的,但它在推理方面犯的错误比医生多——比如考虑为什么应该问某些问题而不仅仅是问什么——比更有经验的人类同行,比住院医师做得更好,但比主治医生做得更好。

Schwartzstein 说,学生可能容易过度使用 AI 的另一个领域是分析实验室数据。“解释考试和在归纳模式下工作有助于他们学习批判性思维,”他说。“大多数由可能的诊断错误引起的医疗事故案件都不是奇怪的案件。它们是人们犯错误的基本案例 — 思维错误。因此,虽然使用 AI 处理此类病例对于附近没有医生支持的资源匮乏地区的执业护士来说非常有用,但对于医生来说,没有这种培训和思维能力将是有问题的。

不过,一旦医生拥有多年的实践经验,“拥有一个始终如一的 AI 代理来监督我们的行动和发现错误将是一个巨大的胜利,”Kohane 争辩说。“有时,经验丰富的医生会犯一些新手错误,因为他们感到疲倦或感觉不舒服,因此让 AI 检查我们的工作可能会显着提高医院的死亡率和发病率。”

实际应用

但是,AI 不也是出了名的容易出错吗?ChatGPT 的“幻觉”——比如通过掩盖提示中的明显错误来提供一个详细但非常错误的答案,比如“完全步行穿越英吉利海峡的世界纪录是多少”——都是模因的东西。Kohane 说,这个问题预计会随着时间的推移而改善,但即使在今天,他指出,“AI 犯的错误与人类犯的错误不同,因此可以成为一种良好的伙伴关系。他指出,不仅底层技术在改进,而且还极大地扩展了医生可以用来进行诊断的数据库。例如,在近 100 万张心电图上训练的机器学习模型在诊断 38 种疾病方面的表现与心脏病专家一样好,甚至更好。“想象一下,在初级保健医生手中会是什么样子,”Kohane 说。

Kohane 指出,当电子健康记录 (EHR) 和患者可穿戴设备输入补充这些庞大的数据集时,它们可以变得更加全面。“GenAI 不必只从试验和医学期刊中提取,”他说。“如果在同意和透明的情况下收集真实数据,那么这些额外的信息可以帮助医生看到他们可能无法看到的东西。”

Isaac Kohane__艾萨克·科汉

这种类型的数据已经被用于 Brigham and Women’s 内科学生的试点计划。“当他们在病房时,”Chang 说,“学生只能向当时恰好在医院的病人学习。但是这个工具既可以访问课程目标,也可以访问患者 EHR,因此它可以将学生实际遇到的情况与我们的学习目标进行比较。Chang 相信,几年内,这样的用例将变得司空见惯。“在轮换之前,学生们会访问他们手机上的一个应用程序,上面写着’早上好,我建议你去看这三位病人’,因为这些病人代表了学生的知识空白。”

AI 训练数据中的偏差问题也有据可查。正如 Schwartzstein 及其同事在发表在《CHEST》杂志上的一篇论文中指出的那样,不仅人工智能本身容易复制它从中学习的人类生成材料中固有的偏见,而且至少有一项研究表明,这种循环可以回旋并将人工智能偏见传递给人类。

同时,有证据表明反馈也可以朝着另一个方向发挥作用。Brigham and Women’s 最近的一项研究表明,在 AI 训练数据集中包含更多细节可以减少观察到的差异,麻省总医院的一位儿科医生正在进行的研究正在训练 AI 识别教师对学生评估中的偏见。

“无论信息来自哪里,都存在很多偏见,”Tan 说,“所以我们必须密切关注这一点。但是,如果我们能以协同方式利用人工智能,它可以成为我们工具包中促进教育公平的有用工具——例如,放入我们知道有效的特定文章、引文、工具,并要求它从反映该领域最新情况的资源中汲取信息,同时保持对这些问题的了解。

因此,解决方案的一部分是了解用于创建 AI 工具的数据。Chang 提到了 HMS 的“tutorbAIMots”,这些机器人是在自主开发的课程中接受培训的。“我们使用 ChatGPT 作为引擎,”他说,“但使用我们提供的语言和课程信息来限制它。如果我们没有,来到 HMS 会有什么特别之处?

鉴于发生的所有变化,当今年的毕业生继续前进时,HMS 学位会有什么特别之处?

如果 AIM 博士课程的学生今天毕业,“他们将立即在所有竞争激烈的医院和大学中获得顶级工作机会,”Kohane 说。“我估计 60% 的毕业生将进入工业界。但是,当他们在五年左右的时间里走出去时,他们也会在学术界和研究界找到大量的绿地。

Tan 说,部分原因在于受过这些技术培训的学生的适应性。“很难预测这会走多远,”她说。“但未来最成功的医生和研究人员将是能够利用 genAI 进行创新和战略规划的人。提出解决方案的人将是正在使用这些工具的人。

推进医学教育创新

2024 年 3 月,HMS 宣布了 33 名院长创新奖获得者,以表彰他们在教育、研究和管理中使用人工智能。以下是与医学教育相关的项目示例。

未来的患者角色:交互式大型语言模型增强的哈佛临床培训伙伴 - Arya Rao、Marc Succi 和 Susan Farrell

Rao 说,为学生提供在标准化患者身上练习临床技能的机会是医学院的重要组成部分。当 “访问” 结束时,扮演患者的演员和他们的教授会根据他们的临床推理、沟通技巧等对学生进行评分。但这所花费的费用和时间可能会限制这些机会。因此,Rao、麻省总医院 HMS 放射学助理教授 Marc Succi 和评估和评价副院长兼综合临床技能 OSCE 考试主任 Susan Farrell 正在开发可用作标准化患者的定制大型语言模型。他们正在使用特定于 HMS 课程的材料来加强这些模型,他们称之为 SP-LLM。学生将能够使用文本和语音与模型互动,收集患者病史,获取诊断信息,并开始临床管理,同时练习他们的沟通技巧。

“一个很好的功能是,当访问结束时,”Rao 说,“SP-LLM 还会为学生提供有关遭遇的反馈,充当患者和导师。由于该工具随时随地可用,因此学生可以在开始看到真正的患者之前获得更多的实践经验。

_生成式人工智能评分和学习工具的开发 -_Greg Kuling、Jay Vasilev、Samantha Pullman、Randy King、Barbara Cockrill、Richard Schwartzstein 和 Henrike Besche

HMS 的 Pathways 课程轨道强调独立学习和基于案例的协作课堂作业。Schwartzstein 及其同事开发了一个系统,可以对简答题进行批量自动评分,以总结学生的长处和短处,确定概念上的挑战,并提出量身定制的教学策略。Schwartzstein 是 2015 年开发 Pathways 课程的指导委员会主席,他需要大约 8 个小时来对班级所有 170 名学生的单个开放式问题的回答进行评分,这不包括提供反馈。“我不可能用家庭作业来做到这一点,”他说,“但如果 AI 可以,那对他们来说会很有帮助。他补充说,简化流程将使学生能够进行更多的练习,从而“获得更多练习,以确定他们是否正确地将所学的原则应用于案例研究”。

利用生成式 AI 创建以学习者为中心且基于证据的课程大纲-Taralyn Tan 和 Krisztina Fischer

Tan 和 HMS 放射学助理教授 Krisztina Fischer 在 Brigham and Women’s 兼职,正在研究在 Tan 的 Teaching 100 课程中使用 AI,以开发和试点一种使用生成式 AI 创建教学大纲的工具,目标是让其他 HMS 教师采用它。在课程中,Tan 的学生首先尝试自己创建以学习者为中心、基于证据的教学大纲组成部分,然后他们使用 AI 做同样的事情。“这门课有一个非常元的双重目的,”Tan 说,“因为学生们既在自己的教学中,也从学习者的角度体验它。Tan 还允许她的学生在这个顶点作业之外在课堂上使用 AI。“当我问起这个问题时,我得到的最常见的回答是他们不知道如何使用它,”她说。“所以这说明了需要基本能力来吸引我们的学习者。”

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值