当你开始任何客户项目时,最常见的问题之一是:“我应该使用哪个模型?” 这个问题没有直接的答案,它是一个过程。在本博客中,我们将解释这个过程,这样下次客户问你这个问题时,你可以与他们分享这份文档。😁
选择正确的模型,无论是GPT4 Turbo、Gemini Pro、Gemini Flash GPT-4o还是较小的选项如GPT-4o-mini,都需要在准确性、延迟和成本之间进行权衡。
核心原则
选择模型的原则很简单:
首先优化准确性:在达到准确性目标之前,始终优化准确性。
其次优化成本和延迟:然后目标是在尽可能便宜和快速的模型中保持准确性。
专注于准确性
设定明确的准确性目标:定义对于你的使用场景来说什么样的准确性是“足够好”。例如:首次互动中90%的客服通话被正确分类
开发评估数据集:创建一个数据集来衡量模型的表现。例如:收集100个交互示例,包括用户请求、模型分类、正确的分类以及准确性
使用最强大的模型:从最强大的模型开始,以实现你的准确性目标。记录响应以供将来使用。
优化准确性:使用检索增强生成,然后进行微调以确保一致性和行为
收集供将来使用的数据:收集提示和完成对,用于评估、少量样本学习或微调。这种做法,被称为提示烘焙,有助于为将来使用生成高质量的示例。
优化成本和延迟
成本和延迟被视为次要因素,因为如果模型无法达到你的准确率目标,那么这些问题就无关紧要了。然而,一旦你有了一个适用于你用例的模型,你可以采取以下两种方法之一:
与一个更小的模型进行零样本或少样本对比:用一个更小、更便宜的模型替换现有模型,并测试其在较低成本和延迟下的准确率是否得以保持。
模型蒸馏:使用在优化准确率过程中收集的数据对一个小模型进行微调。
成本和延迟通常是相互关联的;减少令牌和请求通常会导致更快的处理速度。
这里需要考虑的主要策略是:
减少请求:限制完成任务所需的请求数量。
最小化令牌:降低输入令牌的数量,并优化模型输出的长度。
选择较小的模型:使用在降低成本和延迟的同时保持准确性的模型。
来自开放AI的实际示例
为了展示这些原则,他们开发了一个假新闻分类器,目标指标如下:
准确性:实现90%的正确分类
成本:每1,000篇文章花费少于5美元
延迟:保持每篇文章的处理时间在2秒以内
实验
他们进行了三个实验以达到目标:
零样本:使用GPT-4o和基本提示处理了1,000条记录,但未达到准确性目标。
少量样本学习:包含了5个少量样本示例,达到了准确性目标但因更多的提示令牌而超出了成本。
微调模型:使用1,000个带标签的示例对GPT-4o-mini进行了微调,达到了所有目标,具有相似的延迟和准确性但成本显著降低。
结论
首先优化准确性,然后是成本和延迟的优化。
这个过程很重要——你通常不能直接跳到微调阶段,因为你不知道微调是否是你所需要的优化的正确工具,或者你没有足够的标注样本。
使用一个准确的大模型来达到你的准确性目标,并整理一个好的训练集——然后通过微调来使用更小、更高效的模型。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈