1月15日,OpenAI 推出了一项名为Tasks 的测试版新功能,主要面向Plus、Pro和 Teams 用户开放。Tasks 旨在为 ChatGPT 提供自动化的任务处理能力,用户可以设置一次性提醒或重复性任务,让 ChatGPT 帮助完成各种任务。有人认为,Tasks 标志着 ChatGPT 从被动对话的 Agent进化为能够主动管理和执行计划任务的助手,是 OpenAI 进军 AI智能体(AI Agent)的第一步。
ChatGPT 刚刚宣布支持 Tasks 能力,LangChain 就搞出来了可用开源版本!
1. 引言
在 AI 快速发展的今天,我们已经习惯了通过聊天界面与 AI 助手进行交互。无论是处理邮件、编写代码,还是进行创意写作,这种交互模式已经成为我们日常工作的一部分。然而,随着应用场景的不断拓展,传统的聊天式交互开始显露出其局限性。
最明显的问题是效率瓶颈:每次需要 AI 协助时,我们都必须主动打开对话窗口,输入指令,等待响应。这种方式不仅打断了工作流程,还限制了我们同时处理多个任务的能力。想象一下,如果你有一位人类助理,你会希望每次需要帮助时都要敲门进入他的办公室吗?显然不会。这就是为什么我们需要一种新的交互范式,而 Langchain 团队提出的 Ambient Agent 正是对这一问题的创新性解答(点击阅读原文进入 Langchain 文章)
2. 什么是 Ambient Agent?
2.1 核心特征
Ambient Agent 代表了一种全新的 AI 助手范式,其本质是一个能够在环境中持续存在并主动工作的 AI Agent。与传统的被动响应式 AI 不同,Ambient Agent 具有自主性、持续性和环境感知能力。
这种 Agent 系统最显著的特征是其主动性。它不需要等待用户的明确指令就能开始工作,而是通过持续监控环境中的各种信号来主动发现和处理任务。比如,它能够自动监控你的邮箱,识别重要邮件,并在适当的时候提醒你或者采取行动。
更重要的是,Ambient Agent 可以同时处理多个任务。这种并行处理能力极大地提升了工作效率,让 AI 助手更接近于真实助理的工作方式。它不再被限制在单一的对话窗口中,而是可以在后台同时推进多个工作流程。
2.2 与传统聊天机器人的对比
传统的聊天机器人采用一问一答的交互模式,这种模式简单直接,但也带来了诸多限制。首先,它要求用户在每次需要帮助时都必须主动发起对话,这增加了交互成本。其次,聊天形式的交互通常是同步的,用户需要等待 AI 的响应才能继续下一步操作,这在处理复杂任务时特别耗时。
相比之下,Ambient Agent 采用了异步的工作模式。它能够在后台持续运行,主动监控和处理各种任务,只在真正需要用户参与时才会发出通知。这种方式不仅减少了用户的操作负担,还提高了整体的工作效率。
3. Ambient Agent 的工作原理
3.1 后台监控机制
Ambient Agent 的核心是其强大的事件流监听系统。这个系统能够持续捕捉环境中的各种信号,包括但不限于新邮件的到达、日程变更、系统通知等。通过对这些信号的实时分析,Agent 能够及时发现需要处理的任务。
在信号处理方面,Ambient Agent 采用了复杂的优先级管理机制。它不会对每个信号都立即作出响应,而是会根据预设的规则和上下文来评估任务的重要性和紧急程度,从而决定是否需要立即处理或通知用户。
3.2 人机协作模式
Ambient Agent 设计了三种主要的人机协作模式,分别应对不同的场景需求:
1. Notify(通知)模式用于重要事件的提醒。当 Agent 发现需要用户注意的情况时,会通过合适的方式发出通知。这种通知不同于传统的机械提醒,而是经过智能筛选和整合的,确保不会打扰到用户的注意力。
2. Question(询问)模式在 Agent 需要额外信息才能继续工作时触发。例如,当收到会议邀请时,Agent 会询问用户的参与意向,然后根据答复来安排后续工作。这种交互方式保持了决策的灵活性,同时避免了过度自动化可能带来的问题。
3. Review(审核)模式则用于需要用户确认的重要操作。当 Agent 制定了行动方案后,会将方案提交给用户审核,用户可以选择接受、修改或拒绝。这种机制既保证了操作的安全性,也为 Agent 提供了学习和改进的机会。
3.3 决策机制
在决策方面,Ambient Agent 采用了分层的决策机制。对于日常性、低风险的任务,Agent 可以直接处理;对于需要判断或可能产生重要影响的决策,则会寻求用户的参与。这种机制确保了自动化和人工干预之间的平衡。
4. 实际应用案例
4.1 邮件助理
邮件助理是 Ambient Agent 最典型的应用场景之一。它能够自动分类收到的邮件,识别重要程度,并根据预设的规则采取相应行动。对于常规性的邮件,它可以直接起草回复供用户审核;对于需要特殊处理的邮件,它会及时提醒用户并提供必要的上下文信息。
更重要的是,邮件助理能够与日程管理系统集成,自动处理会议邀请、协调时间安排,甚至主动提醒用户可能存在的日程冲突。这种全方位的协助大大减轻了用户的日常工作负担。
4.2 开发助手
在软件开发领域,像 Devin 这样的 Ambient Agent 展现出了强大的潜力。它能够持续监控代码仓库的变化,自动进行代码审查,发现潜在的问题。当遇到需要开发者注意的情况时,它会主动发出提醒,并提供详细的问题描述和可能的解决方案。
在持续集成过程中,开发助手可以自动运行测试,分析测试结果,并在发现异常时立即通知相关开发者。这种持续的监控和即时反馈机制大大提高了开发团队的工作效率。
5. 人类角色的转变
5.1 从"人在回路中"到"人在回路上"
Ambient Agent 的出现带来了人机协作方式的根本性转变。传统的"人在回路中"(Human-in-the-loop)模式要求人类参与每个决策环节,而新的"人在回路上"(Human-on-the-loop)模式则让人类转向监督者的角色。
这种转变并不意味着人类失去了控制权,相反,它提供了更高效的控制方式。用户可以随时查看 Agent 的工作记录,了解决策过程,并在需要时进行干预。这种透明性和可控性是建立信任的关键基础。
5.2 新型交互界面
为了支持这种新的工作模式,产生了 Agent Inbox 等创新性的交互界面。这种界面集中展示了所有需要人类注意的事项,并按优先级进行组织。用户可以在这里查看 Agent 的工作进展,提供必要的输入,审核关键决策。
这种集中式的管理界面不仅提高了工作效率,还为用户提供了更好的可见性和控制力。通过精心设计的反馈机制,用户可以持续调整 Agent 的行为,使其更好地适应特定的工作需求。
6. 技术实现
6.1 核心组件
Ambient Agent 的技术实现依赖于多个关键组件的协同工作。事件监听系统负责捕捉和分发各种环境信号;状态管理系统维护任务的执行状态和上下文信息;持久化存储则确保了数据的可靠性和连续性。
这些组件需要高度的可靠性和可扩展性,因为它们要支持 Agent 的持续运行和多任务处理能力。同时,它们还需要具备良好的容错能力,确保在出现异常情况时能够妥善处理。
6.2 关键技术
在技术栈方面,像 LangGraph 这样的框架提供了构建 Ambient Agent 所需的基础设施。它支持状态的检查点保存、人机交互的集成,以及长期记忆机制的实现。
长期记忆机制特别重要,因为它使得 Agent 能够从过去的交互中学习,不断改善其决策能力。通过适当的记忆管理,Agent 可以逐步建立起对用户偏好和工作模式的理解。
7. 未来展望
7.1 发展趋势
Ambient Agent 的发展方向呈现出几个明显的趋势:
首先是个性化水平的提升,Agent 将能够更好地理解和适应每个用户的独特需求和工作习惯。
其次是多 Agent 协作的增强,不同的专业化 Agent 将能够协同工作,处理更复杂的任务。
应用场景也在不断扩展,从个人助理到团队协作,从简单的任务处理到复杂的决策支持,Ambient Agent 的潜力正在被不断挖掘。
7.2 潜在挑战
当然,这种新型的交互范式也面临着诸多挑战。
隐私安全是首要考虑的问题。因为 Ambient Agent 需要访问大量的个人和组织数据。如何在提供服务的同时保护用户隐私,需要更严谨的技术和政策设计。
建立信任是另一个关键挑战。用户需要时间来适应这种新的工作方式,而 Agent 也需要通过持续的良好表现来赢得用户的信任。交互设计的优化也是一个持续的课题,需要在自动化和人工干预之间找到最佳平衡点。
8. 结论
Ambient Agent 代表了人机交互的一次重要革新。它突破了传统聊天式交互的局限,提供了一种更自然、更高效的协作方式。通过持续的后台运行和智能的干预机制,它既提高了工作效率,又保持了必要的人工控制。
这种新的范式必将对未来的工作方式产生深远影响。随着技术的不断进步和应用场景的拓展,Ambient Agent 将成为我们工作中不可或缺的智能助手。但要充分发挥其潜力,我们需要在技术实现、交互设计、隐私保护等多个方面继续努力。
对于组织和个人来说,现在正是开始尝试和适应这种新型工作方式的好时机。通过谨慎的规划和循序渐进的实施,我们可以逐步实现工作方式的升级,让 AI 更好地服务于人类的需求。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈