微信灰度测试接入DeepSeek-R1大模型
微信于2月15日悄然启动灰度测试,部分用户已可体验新接入的DeepSeek-R1大模型功能。用户通过微信主界面搜索框可查看是否出现“AI搜索”选项,进入后可选择“快速问答”或“深度思考”模式。前者提供高效回答,后者调用DeepSeek-R1模型,经过长时间思考后生成更全面的答案。微信“AI搜索”附有开源声明,明确提及对DeepSeek开源大模型的使用,并感谢深度求索公司及开源社区的贡献。腾讯相关人士确认,微信搜一搜在调用混元大模型的同时,正式灰度测试接入DeepSeek,用户可免费使用满血版DeepSeek-R1模型。AI搜索支持联网搜索,整合公众号及全网公开信息,但不涉及用户隐私。网友体验显示,微信接入DeepSeek后具备原汁原味的回答模式、连续提问支持、丰富资料来源及社交功能,但暂不支持历史问答。此前,腾讯已通过腾讯云、智能工作台ima、QQ音乐等平台拥抱DeepSeek,此次微信接入进一步推动AI普及,结合微信生态资源,有望为用户提供更智慧的搜索体验。
Meta计划研发人形机器人硬件与软件
据彭博社报道,Meta正计划设计人形机器人的硬件与软件,其新成立的团队将首先研发能够完成家务的“人形机器人硬件”。Meta的目标是开发底层人工智能、传感器和软件,供多家公司制造和销售机器人,而非直接推出自有品牌。Meta已与Unitree Robotics和Figure AI等公司展开讨论。Meta首席技术官安德鲁·博斯沃斯表示,公司在现实实验室和人工智能领域的技术积累对机器人开发具有互补作用。特斯拉、苹果和英伟达等科技巨头也在积极布局机器人领域。Meta的机器人团队由前Cruise首席执行官马克·惠滕领导,他在自动驾驶和科技行业拥有丰富经验。此外,Meta在人工智能领域投入650亿美元的同时,也在推广智能眼镜,并聘请奢侈品交易平台前首席执行官约翰·科里尔担任零售业务副总裁。这一系列动作显示Meta正加速布局人工智能与机器人领域,试图在未来的智能家居和机器人市场中占据重要地位。
Perplexity推出免费AI研究工具Deep Research
AI搜索初创公司Perplexity正式发布免费AI研究工具Deep Research,进军由OpenAI和Google主导的AI驱动研究领域。该工具通过迭代搜索、分析数百种来源并生成全面报告,旨在快速复制人类研究员的工作。用户可针对任何主题生成深入研究报告,免费用户每天可使用5次查询,Pro用户则享有每天500次查询权限。与OpenAI和Google的同类工具相比,Perplexity的Deep Research对公众免费开放,且报告生成速度更快,大多数报告可在3分钟内完成。工具支持将报告导出为PDF或可分享的Perplexity Pages格式,并能根据新发现动态调整搜索策略。在Humanity’s Last Exam测试中,Deep Research表现优于Google Gemini和GPT-4o,但在SimpleQA测试中准确率达93.9%,显示出强大的信息检索能力。Perplexity自2022年成立以来迅速崛起,估值达90亿美元,但也面临版权争议,正通过与出版商签订收益共享协议解决相关问题。Deep Research已在网页端上线,并将扩展至iOS、Android和Mac平台,其免费加付费模式可能对AI研究助手市场产生重要影响。
OpenAI调整AI模型训练方式支持“知识自由”
OpenAI近期调整了其AI模型的训练方式,明确支持“知识自由”,旨在减少ChatGPT回避争议性话题的情况,使其能够提供更多视角和回答更多问题。这一政策变化可能旨在与新上任的特朗普政府保持良好关系,同时也反映了硅谷对“AI安全”认知的转变。OpenAI发布了更新后的《模型规范》文档,提出“不撒谎”的新指导原则,强调AI助手应避免采取编辑立场,即使某些话题可能引发争议或冒犯。例如,在政治议题上,ChatGPT将同时表达“黑人的命也是命”和“所有生命都重要”的观点,保持中立并提供背景信息。尽管这一原则可能引发争议,OpenAI强调AI助手的目的是协助而非塑造人类。新规范并不意味着ChatGPT完全不受限制,它仍会拒绝回答某些令人反感的问题或支持虚假信息。有观点认为,这一调整是对保守派批评的回应,但OpenAI否认了这一说法,称其长期秉持“赋予用户更多控制权”的信念。然而,这一政策变化并未得到所有人的认同。
Torque Clustering:AI自主学习的未来
Torque Clustering是一种新型人工智能算法,旨在提高AI系统在没有人类输入的情况下进行自主学习和数据模式识别的能力。这一算法模仿自然智能,更接近人类的学习方式,不依赖人工标注数据,能够高效地分析多个领域的大型数据集,如生物学、金融学和医学。通过揭示数据中的隐藏模式,Torque Clustering能够提供重要的见解,帮助检测疾病趋势、识别欺诈行为等。与传统的监督学习方法不同,Torque Clustering使用无监督学习,无需对数据进行标签化,且能发现数据内部的结构和规律。这使得它能够处理复杂和大规模任务,避免了标注数据的高成本和长时间消耗。算法基于物理学中的扭矩概念,能够自主识别数据集中的聚类,适应不同的数据形态、密度和噪声。经过在多个数据集上的测试,Torque Clustering表现出极高的计算效率,可能成为无监督学习的突破性技术,推动机器人和自主系统的发展。
百度搜索引入DeepSeek与文心大模型
百度搜索近期宣布更新,将集成DeepSeek与文心大模型的深度搜索功能,免费开放给所有用户。这项更新将显著提升搜索的精准性与深度,帮助用户获取更具价值的信息。文心大模型的深度搜索功能,具备强大的思考规划能力,能够为用户提供专家级内容回复,并支持多模态输入与输出,进一步提升了搜索的实用性。此外,这一更新还为文心智能体平台的开发者带来了新机遇,开发者能够调用DeepSeek模型,优化智能体产品,促进平台生态的扩展。这一举措标志着百度在推动人工智能与搜索技术结合方面迈出了重要一步,既提升了用户体验,又为开发者提供了创新空间。
腾讯多款产品接入DeepSeek-R1模型
腾讯宣布旗下多款产品,包括腾讯元宝、微信、QQ浏览器、腾讯文档等,已全面接入DeepSeek-R1模型,旨在提升用户体验。这些产品不仅集成了腾讯混元大模型,还加入了DeepSeek-R1模型,提供更加智能和高效的服务。例如,腾讯元宝已免费提供DeepSeek-R1模型使用,并同步上线了混元T1(Thinker)深度思考模型,帮助用户解决复杂问题。微信的“AI搜索”功能也在灰度测试中上线,带来更精准的搜索结果。此外,腾讯文档与DeepSeek-R1结合,能自动生成各种类型的文档,为创作提供便捷工具。QQ浏览器整合了DeepSeek模型,支持深度思考、多轮对话及信息处理功能,增强了用户的浏览体验。而QQ音乐则利用该模型优化了音乐推荐和知识问答功能,进一步提升用户体验。随着更多腾讯产品的接入,DeepSeek-R1的应用有望为数字化服务带来新的突破。
马斯克发布Grok 3
埃隆·马斯克的人工智能初创公司xAI 2月17日晚发布最新聊天机器人Grok 3。马斯克称其为“地球上最聪明的人工智能”。Grok 3的核心优势在于其“思维链”推理能力,使得机器人能更高效地处理复杂任务,模拟人类认知过程。此外,Grok 3在推理、编程、文本和图像分析等多模态功能上有显著提升。目前,Grok系列已在马斯克的社交平台X上上线,用户可通过该平台体验该模型。虽然Grok 3的推出时间晚于预期,但其对AI大模型竞赛的影响深远,尤其在与OpenAI等竞争对手的竞争中。xAI公司正在筹资约100亿美元,计划购买更多GPU提升算力,尽管其估值仍远低于OpenAI。目前xAI的估值为510亿美元,而OpenAI的估值已达到1500亿美元,且正在筹集更多资金。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈