美团笔试题_小明得到的最高分

题目:

小明同学,在参加1场考试,考试时间是两个小时,试卷上一共有n道题目,小明要在规定的时间内完成一定数量的题目;

考试中不限制试题作答顺序,对于第i道题目,小明有三种不同的策略进行选择:

(1)直接跳过这道题目不花费时间,本题得0分;

(2)只做一部分题目,花费pi分钟的时间,本题可以得到ai分;

(3)做完整个题目花费qi分钟的时间,可以得到bi分;

小明想知道他最多能得到多少分?

输入:

第一行输入一个n数表示题目的数量

接下来n行 ,每行四个数表示pi,ai,qi,bi(1<=n<=100,1<=pi<=qi<=120,0<=ai<=bi<1000);

输出:

输出一个整数,小明的最高分。

样例输入:

20  20  100  60 

50  30  80  55

100  50 110  88

5  3  10  6

样例输出:

94

 

思路:

稍微复杂点的背包问题;

实现:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 int TIME = 121;
 4 int process(const vector<int>& p,const vector<int>& a,
 5             const vector<int>& q,const vector<int>& b) {
 6     int n = p.size();
 7     if (n == 0) return 0;
 8 
 9     vector<vector<int> > memo(n,vector<int>(TIME+1,-1));
10     for (int j = 0; j <= TIME; ++j) {
11         memo[0][j] = (j >= p[0] ? a[0]:0);
12         memo[0][j] = (j >= q[0] && b[0] > a[0] ? b[0]:memo[0][j]);
13     }
14 
15     for (int i = 1; i < n; ++i) {
16         for (int j = 0; j <= TIME ; ++j) {
17             memo[i][j] = memo[i-1][j];
18             if (j >= p[i])
19                 memo[i][j] = max(memo[i][j],a[i] + memo[i-1][j-p[i]]);
20             if (j >= q[i]) {
21                 memo[i][j] = max(memo[i][j],b[i] + memo[i-1][j-q[i]]);
22             }
23         }
24     }
25 
26     return memo[n-1][TIME];
27 }
28 
29 
30 int main()
31 {
32     int n;
33     cin >> n;
34     int dp[TIME];
35     memset(dp, 0, TIME * sizeof(int));
36     int p, a, q, b;
37 
38     vector<int> pVector;
39     vector<int> aVector;
40     vector<int> qVector;
41     vector<int> bVector;
42 
43     for (int k = 0; k < n; ++k) {
44         cin >> p >> a >> q >> b;
45         pVector.push_back(p);
46         aVector.push_back(a);
47         qVector.push_back(q);
48         bVector.push_back(b);
49     }
50     cout << process(pVector,aVector,qVector,bVector);
51 }

 

-------64%解法-,留作参考---------------------------

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 int TIME = 121;
 5 
 6 int main()
 7 {
 8     int n;
 9     cin >> n;
10     int dp[TIME];
11     memset(dp, 0, TIME * sizeof(int));
12     int p, a, q, b;
13     int i, j;
14     for (i = 0; i < n; i++)
15     {
16         cin >> p >> a >> q >> b;
17         for (j = 0; j + p < TIME; j++)
18         {
19             dp[j] = max(dp[j], dp[j + p] + a);
20         }
21         for (j = 0; j + q < TIME; j++)
22         {
23             dp[j] = max(dp[j], dp[j + q] + b);
24         }
25     }
26     int ret = 0;
27     for (i = 0; i < TIME; i++)
28     {
29         ret = max(ret, dp[i]);
30     }
31     cout << ret;
32 }

 

转载于:https://www.cnblogs.com/TonvyLeeBlogs/p/9601339.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值