Algorithm Complexity(算法复杂度)

本文深入探讨了算法复杂度的概念,包括时间复杂度和空间复杂度,解析了它们在评估算法效率方面的重要性。通过实例分析,解释了如何分析并计算算法的时间和空间复杂度,帮助读者更好地理解和优化代码性能。
摘要由CSDN通过智能技术生成

算 法 复 杂 度

 

算法复杂度

 

时间复杂度

执行算法所需要的计算工作量

是一个函数定量描述了该算法的运行时间

T(n)=O(f(n))

算法的基本操作重复执行的次数是模块n的某一个函数f(n)

随着模块n的增大,算法执行的时间的增长率和 f(n) 的增长率成正比,所以 f(n) 越小,算法的时间复杂度越低,算法的效率越高。

空间复杂度

空间复杂度是指执行这个算法所需要的内存空间

固定部分

这部分空间的大小与输入/输出的数据的个数多少、数值无关。主要包括指令空间(即代码空间)、数据空间(常量、简单变量)等所占的空间。这部分属于静态空

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值