【概率论与数理统计】全概率公式和贝叶斯公式

这篇博客介绍了条件概率、乘法公式、全概率公式和贝叶斯公式,详细解释了它们的概念和应用场景。通过全概率公式可以「由原因推结果」,而贝叶斯公式则用于「由结果推原因」。通过一个硬币投掷的例子,展示了如何运用这两个公式解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 条件概率公式


 

设A, B是两个事件,且P(B)>0, 则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:

P(A|B)=P(AB)/P(B)

条件概率是理解全概率公式和贝叶斯公式的基础,可以这样来考虑,如果P(A|B)大于P(A)则表示B的发生使A发生的可能性增大了。

 

2. 乘法公式


 2.1 乘法公式

由条件概率公式得:

 P(AB) = P(B)·P(A|B) = P(A)·P(B|A)

上面的式子就是乘法公式。

 

2.2 乘法公式的推广

对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有:

P(A1A2...An-1An) = P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)

 

3. 全概率公式


 3.1 前提假设

设B1,B2,....为有限或无限个事件,它们两两互斥且在每次试验中至少发生一个ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值