BERT进行文本分类和文本匹配的不同

def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""

  if isinstance(example, PaddingInputExample):
    return InputFeatures(
        input_ids=[0] * max_seq_length,
        input_mask=[0] * max_seq_length,
        segment_ids=[0] * max_seq_length,
        label_id=0,
        is_real_example=False)

  label_map = {}
  for (i, label) in enumerate(label_list):
    label_map[label] = i

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _trunca
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer的预训练语言模型,它在自然语言处理领域取得了很大成功。BERT的句间关系分类任务可以用于语义匹配,即判断两个句子之间的语义关系。 在基于BERT的语义匹配模型中,通常采用Fine-tuning的方法进行模型训练。首先,将两个句子输入BERT模型进行编码,得到句子的表示向量。然后,将这两个句子的表示向量进行拼接、相减或者做其他操作,得到一个合并后的表示向量。最后,将合并后的表示向量输入一个分类器(如全连接层)进行分类,判断两个句子之间的关系。 在具体实现中,可以使用公开的预训练好的BERT模型,如BERT-Base或者BERT-Large。通过在大规模语料上进行预训练,BERT模型能够学习到丰富的语言表示。在Fine-tuning阶段,可以使用带标签的数据对模型进行有监督的训练,调整模型参数使其适应特定的任务。 对于语义匹配任务,常见的数据集有SNLI、Quora Question Pairs和Microsoft Research Paraphrase Corpus等。通过使用这些数据集进行Fine-tuning,可以构建一个在语义匹配上表现较好的BERT模型。 需要注意的是,BERT模型在处理长文本时可能会面临输入限制的问题。可以采用截断策略或者其他方法来处理超过模型输入长度限制的文本。此外,还可以结合其他技术,如注意力机制、循环神经网络等,来进一步提升模型性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值