SparkStreaming+Kafka的两种模式receiver模式和Direct模式
一、前述
SparkStreamin是流式问题的解决的代表,一般结合kafka使用,所以本文着重讲解sparkStreaming+kafka两种模式。
二、具体
1、Receiver模式
原理图:
receiver模式理解:
在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据。数据会被持久化,默认级别为MEMORY_AND_DISK_SER_2,这个级别也可以修改。receiver task对接收过来的数据进行存储和备份,这个过程会有节点之间的数据传输。备份完成后去zookeeper中更新消费偏移量,然后向Driver中的receiver tracker汇报数据的位置。最后Driver根据数据本地化将task分发到不同节点上执行。
receiver模式中存在的问题:
当Driver进程挂掉后,Driver下的Executor都会被杀掉,当更新完zookeeper消费偏移量的时候,Driver如果挂掉了,就会存在找不到数据的问题,相当于丢失数据。
如何解决这个问题?
开启WAL(write ahead log)预写日志机制,在接受过来数据备份到其他节点的时候,同时备份到HDFS上一份(我们需要将接收来的数据的持久化级别降级到MEMORY_AND_DISK),这样就能保证数据的安全性。不过,因为写HDFS比较消耗性能,要在备份完数据之后才能进行更新zookeeper以及汇报位置等,这样会增加job的执行时间,这样对于任务的执行提高了延迟度。
注意:1)开启WAL之后,接受数据级别要降级,有效率问题。2)开启WAL要checkpoint 3)开启WAL(write ahead log),往HDFS中备份一份数据
receiver的并行度设置
receiver的并行度是由spark.streaming.blockInterval来决定的,默认为200ms,假设batchInterval为5s,那么每隔blockInterval就会产生一个block,这里就对应每批次产生RDD的partition,这样5秒产生的这个Dstream中的这个RDD的partition为25个,并行度就是25。如果想提高并行度可以减少blockInterval的数值,但是最好不要低于50ms。