线性回归算法梳理

本文详细梳理了线性回归算法,包括机器学习的概念(有监督、无监督、泛化能力)、过拟合与欠拟合的解决方案、交叉验证的类型及其作用,以及线性回归的原理、损失函数、代价函数、目标函数和优化方法(梯度下降、牛顿法、拟牛顿法)。同时,介绍了线性回归的评估指标R^2和sklearn库中LinearRegression的参数详解。
摘要由CSDN通过智能技术生成

线性回归算法梳理

1.机器学习的一些概念

1.1有监督
监督,通俗来讲就是分类,就是把训练样本,在某种评价下得到最佳的模型,然后再利用这个模型将输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。

1.2无监督
无监督,我们事先没有任何训练样本,而直接对数据进行建模。比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别。

1.3泛化能力
学习方法的泛化能力(generalization ability)是指由该学习方法学习到的模型对位置数据的预测能力,是学习方法本质上重要的性质。

1.4过拟合与欠拟合
过拟合(over-fitting):如果一味追求提高对训练数据的预测能力,所选模型的复杂程度则往往会比真模型高。这种现象称为过拟合(over-fitting)。简言之,也就是学习器把训练样本学得“太好”了得时候,很可能已经把训练样本自身的一些特点当作了所有潜在样本都会具有的一些性质,这样就会导致泛化能力差。过拟合图如下:
在这里插入图片描述
解决过拟合的方法:正则化(regularization),正则化是结构风险最小化策略的实现,是在经验风险上加一个正则项(regualrizer)或惩罚项(penalty term)。
欠拟合(underfitting):是指是对训练样本的一

逻辑回归是一种分类算法,它的主要思想是根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。 与线性回归相似,逻辑回归通过一组预测器变量来预测特征与输出结果。但逻辑回归更适用于二分类问题,输出结果为0或1。通过方程系数,我们可以估计模型中自变量的比率。这使得逻辑回归可以用于确定某个事件的可能性。 逻辑回归和多重线性回归的区别在于因变量的不同。多重线性回归的因变量只有一个,而逻辑回归的因变量可以是二分类,也可以是多分类。广义线性模型家族中的模型基本形式相似,主要区别在于因变量的不同。例如,如果因变量是连续的,那么就是多重线性回归;如果因变量是二项分布,那就是逻辑回归;如果因变量是泊松分布,那就是泊松回归。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [逻辑回归算法梳理](https://blog.csdn.net/pandawang830/article/details/88867221)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [逻辑回归算法](https://blog.csdn.net/qq_39691463/article/details/119257621)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值