机器学习
一诺长安
这个作者很懒,什么都没留下…
展开
-
线性回归算法梳理
线性回归算法梳理 1.机器学习的一些概念 1.1有监督 监督,通俗来讲就是分类,就是把训练样本,在某种评价下得到最佳的模型,然后再利用这个模型将输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。 1.2无监督 无监督,我们事先没有任何训练样本,而直接对数据进行建模。比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别。 1.3泛化能力 学...原创 2019-02-28 15:50:14 · 436 阅读 · 0 评论 -
决策树算法梳理
决策树算法梳理 1.信息论基础 熵:熵是表示随机变量不确定性的度量 (解释:说白了就是事物内部的混乱程度,比如杂货市场里面什么都有那肯定混乱,专卖店里面只卖一个牌子的那就稳定多了) 公式: 联合熵 条件熵 条件熵H(Y|X)表示在已知随机变量X的条件下随机变量Y的不确定性。 信息增益 表示特征X使得类Y的不确定性减少的程度。(分类后的专一性,希望分类后的结果是同类在一起) 基尼不存度 2.决策...原创 2019-03-05 11:52:00 · 280 阅读 · 0 评论 -
逻辑回归算法梳理
逻辑回归算法梳理 1.逻辑回归与线性回归的联系区别 线性回归是通过对数据进行建立模型,然后输入新数据可以得到一个预测值。而逻辑回归是一种经典得二分类算法。两者的联系在于将线性回归的输出经过一个Sigmoid函数,然后将该值映射到sigmoid函数中这样就完成了由值到概率的转换,也就是分类任务。 2.逻辑回归的原理 我们在线性回归中可以得到一个预测值,将该值映射到sigmoid函数中这样就完成了由...原创 2019-03-02 23:28:19 · 430 阅读 · 0 评论