给定两个单词(beginWord 和 endWord)和一个字典,找到从 beginWord 到 endWord 的最短转换序列的长度。转换需遵循如下规则:
每次转换只能改变一个字母。
转换过程中的中间单词必须是字典中的单词。
说明:
如果不存在这样的转换序列,返回 0。
所有单词具有相同的长度。
所有单词只由小写字母组成。
字典中不存在重复的单词。
你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
示例 1:
输入:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]
输出: 5
解释: 一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog",
返回它的长度 5。
示例 2:
输入:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
输出: 0
解释: endWord "cog" 不在字典中,所以无法进行转换。
解题思路
广度优先搜索,先对输入进行预处理,每次将wordlist中的一个词中改变一个字母,使用*代替,得到其中间状态,并将每一个能够到达这个中间状态的词使用字典保存起来。
DFS是很适合去做连通性搜索测试,并且如果不需要找到最短路径的话,可以直接退出,不需要存储大量路径信息(C语言也可以用递归来做);而BFS则是很适合去搜索最短路径,因为其会进行层次遍历,在任何一层发现了目标,那都是最短的路径上发现的。
class Solution:
def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
if endWord not in wordList:
return 0
L = len(beginWord)
dic = {}
# 先将每个单词做预处理,找到通用状态,用字典存起来
for word in wordList:
for i in range(L):
if word[:i] + '*' + word[i+1:] not in dic:
dic[word[:i] + '*' + word[i+1:]] = []
dic[word[:i] + '*' + word[i+1:]].append(word)
# print(dic)
queue = [(beginWord, 1)]
# 记录已经浏览过的节点
visited = {beginWord: True}
# 广度优先搜索
while queue:
current_word, level = queue.pop(0)
for i in range(L):
intermediate_word = current_word[:i] + '*' + current_word[i+1:]
if intermediate_word not in dic:
continue
# print(intermediate_word)
for word in dic[intermediate_word]:
if word==endWord:
return level + 1
if word not in visited:
visited[word] = True
# 每一个word都和current_word共用一个通用状态,所以都和 current_word 相连,因此将他们加入到队列中。
queue.append((word, level + 1))
# dic[intermediate_word] = []
return 0