0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。
例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数字依次是2、0、4、1,因此最后剩下的数字是3。
示例 1:
输入: n = 5, m = 3
输出: 3
示例 2:
输入: n = 10, m = 17
输出: 2
限制:
1 <= n <= 10^5
1 <= m <= 10^6
这是一个约瑟夫环问题。
约瑟夫问题比较难想的点有两个:
- 当数到最后一个结点不足m个时,需要跳到第一个结点继续数。
- 每轮都是上一轮被删结点的下一个结点开始数 m 个。
第一点比较好解决,可以通过取余来完成。
第二点的解决方案是:将删除结点的后继作为下一轮的第一个结点,后续结点依次排列。这样每轮都是从首结点开始数 m 个了
递推公式为: f(n, m) = (f(n-1, m)+m) % n
f(n,m)表示还剩n个数时删除第m个数后得到的index,删除之后还剩n-1个数。
所以从后往前推。
问题1 假设我们已经知道11个人时,胜利者的下标位置为6。那下一轮10个人时,胜利者的下标位置为多少?
答 第一轮删掉编号为3的人后,之后的人都往前面移动了3位,胜利这也往前移动了3位,所以他的下标位置由6变成3。
问题2 假设我们已经知道10个人时,胜利者的下标位置为3。那下一轮11个人时,胜利者的下标位置为多少?
答 这可以看错是上一个问题的逆过程,大家都往后移动3位,所以f(11,3)=f(10,3)+3f(11,3)=f(10,3)+3f(11,3)=f(10,3)+3。不过有可能数组会越界,所以最后模上当前人数的个数,f(11,3)=(f(10,3)+3)%11f(11,3)=(f(10,3)+3)%11f(11,3)=(f(10,3)+3)%11
class Solution(object):
def lastRemaining(self, n, m):
"""
:type n: int
:type m: int
:rtype: int
"""
last = 0
# 从后往前倒推
for i in range(2, n+1):
last = (last + m) % i
return last