学习周报20191109 | LM,term weighting

【学习周报】

总结自己的学习和遇到的好材料。

往期回顾:

language model

语言模型现在似乎是NLP的主战场,multitask的思想在语言模型辐射下游上展现的淋漓尽致,BERT前后也有很多算法被抬上或者推下神坛,那么里面的代表模型主要都有哪些,我这里总结一下论文,供大家参考和分析。

  • Word2vector:这里涵盖的论文比较多,我之前其实也提到了这篇论文,下面给出我的链接:NLP.TM | 再看word2vector

  • GLoVe:一个基于共现矩阵的全局词向量模型,同样被称为经典,尝试使用过,效果不错:NLP.TM | GloVe模型及其Python实现

  • ELMo:引入双向语言模型概念,将深度学习格式正式引入到ELMo,形成真预训练模型的格式,在elmo视角下,之前的w2v一流只能说是预训练词典,从这个角度看,ELMo有很大贡献:Deep contextualized word representations

  • GPT:引入了Transformer模型,打败了ELMo的BiLSTM,Improving Language Understanding by Generative Pre-Training

  • GPT2:很多人会拿GPT2和BERT去对比,与BERT的一大核心区别是用decoder而非encoder,当然还有很多细节变化吧,此处不赘述,看论文好吧:Language Models are Unsupervised Multitask Learners

  • BERT:终于到BERT了,可谓是NLP的一个大的里程碑吧(其实我上面列出来的都是),说到思路值得大家琢磨吧,奉上论文:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

  • albert:没有想象中的轻量级吧,但是缩小是肯定的:ALBERT: A LITE BERT FOR SELF-SUPERVISEDLEARNING OF LANGUAGE REPRESENTATIONS

  • T5:很喜欢这个作者的命名风格,T5和C4哈哈哈。T5更像是把一些trick进行分析,并根据实验总结得到的,几十页论文里面大半是实验和实验材料,这种实验其实在科研上是有必要的,在现在零件化的深度学习模式,那个结果好,更换零件调整的实验,其实是很重要的:Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

  • XLNet:在BERT上有所改进吧,这是我看的挺欣慰的地方,敢于突破,当然的,水论文又可以在水BERT之后再水一篇XLNet了,快乐就完事:XLnet: Generalized Autoregressive Pretraining for Language Understanding

  • ELECTRA:还没看完,还在看,但是看到有generator和discriminator的时候,很惊喜,虽然还是seq2seq的底层思路,但是相比bert后续,这个算是比较新的思路了,这点突破很有意思:ELECTRA: PRE-TRAINING TEXT ENCODERS AS DIS-CRIMINATORS RATHER THAN GENERATORS。

上述流程下来,其实感觉收获不少,总结几点个人想法:

  • 了解模型变迁,了解大家的思路变化和趋势。

  • 大模型不是趋势,但大语料还是挺重要的。

有关这块的细节,我会再写文章总结,敬请期待!

term weighting

工作相关,学习方向相关,所以做调研是必须的,这是我捡到比较好的材料:

  • 刘知远:基于文档主题结构的关键词抽取方法研究。另附知乎:https://www.zhihu.com/question/21104071/answer/121576297

  • 搜索中词权重计算及实践:http://www.bubuko.com/infodetail-2859295.html

  • NLP之关键词提取:https://blog.csdn.net/qq_38923076/article/details/81630442

  • 机器之心 | 如何做好文本关键词提取?从三种算法说起:https://www.jiqizhixin.com/articles/2018-11-14-17

  • 学习笔记 — 关键词提取:https://www.jianshu.com/p/837539f116d8

  • query term weight计算:https://blog.csdn.net/madman188/article/details/51855265

  • 美团点评旅游搜索召回策略的演进:https://tech.meituan.com/2017/06/16/travel-search-strategy.html

  • 《美团机器学习实践》:P134,8.3.5词权重与相关性计算

有关的总结我已经撰文搞定啦,大家可以去看看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值