23_24&生日:新环境的应变能力

文章回顾了作者在2022年对大模型技术的应用探索,包括技术方向思考、落地工具与优化,以及个人求职经历和相关建议。作者强调了prompt设计的重要性,并分享了技术架构、求职策略等内容,展示了技术专家的成长和转型过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前几天都在整RAG的文章,所以拖到今天,照例这么整,每年一次,趁机总结一下,挺好的。

回顾

去年毫无疑问是变化很大的一年,一方面大模型技术来临让大家需要进行反应,我也不例外,一大波知识已经到来,另一方面是我个人的问题,换了次工作,当然我也把我换工作做了总结。大家就随着我去年的文章先慢慢了解吧。

去年的文章我想分成3块来聊,分别是大模型技术的落地应用思考、大模型落地技术及其优化、求职专项。

大模型技术的落地应用思考

在23年尤其是前期,自己对大模型技术在后续的应用其实一直有比较多的探索和思考,无论是技术层面的技术本身,还是应用层面的落地和使用场景,自己花了很多时间,也和很多大佬前辈做了大量的沟通和讨论,用一位朋友的话来说,可谓是“殚精竭虑”了,当然了,自己也是有了一些思考结论,确定了自己后续的重点方向,从我下半年的文章,大家多少也是能感知到的。来看一些比较重要的文章的历程。

我思考了类chatgpt方案能做和不能做的场景,包括里面的重点技术和能力,再者就是和现有方案的协同模式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值