上月,Meta宣布推出迄今为止最强大的开源模型——Llama 3.1 405B,同时发布了全新升级的Llama 3.1 70B和8B模型。最近出现了一系列令人激动的开源大语言模型,伴随大模型一起爆火的,还有大模型的微调方法。然而随着模型规模和任务数量的增加,对整个Transformer模型进行微调也变得越来越昂贵。因此,很多参数高效微调方法(Parameter-Efficient Fine-Tuning,PEFT) 方法被提出来解决这类问题。
免费扫描参与课程(附老师ppt原稿&100+大模型论文)
领99个大模型微调模型/数据/工具
(文末有福利)
导师推荐100+大模型论文合集
我们邀请了清华大学博士,AI顶会审稿人青山老师为大家带来——惊艳的大模型高效参数微调法!来和大家聊一聊有关大模型微调的方法、未来趋势及创新点!
免费扫描参与课程(附老师ppt原稿&100+大模型论文)
领99个大模型微调模型/数据/工具
(文末有福利)
讲师介绍—青山老师
▪️研究领域:工业故障诊断、医学图像分割、医学多模态问答、不平衡学习、小样本学习、开集学习和可解释性深度学习等。
▪️共发表20余篇SCI国际期刊和EI会议论文,包括一区期刊IEEE Transactions on Industrial Informatics (影响因子11.648),Applied Soft Computing (影响因子8.263),Neurocomputing (影响因子5.779), ISA Transactions (影响因子5.911),Journal of Intelligent Manufacturing (影响因子7.136) 等。论文引用200+。
▪️长期担任人工智能顶级会议AAAI等审稿人, Neurocomputing,Expert Systems with Applications等国际顶级期刊审稿人。
免费领99个微调数据/模型/工具
▪️58个开源的微调数据
▪️18个开源垂直微调模型
▪️23个开源的指令微调与强化工具
(文末有福利)
作为一个科研小白,怎么发表一篇大模型微调相关的优质论文?
为了论文,大家都在努力地设计新网络、新策略、新training算法,只要能够在某一问题上做到一个很好的performance,论文就水到渠成。而想要快速达到,来自前辈的指点不可或缺。
一个好的指导老师的作用是,没有课题,能够结合所在课题组具体情况,结合最近热门研究方向,帮你规划课题,如果有了课题而缺少创新方向,老师能够快速帮你找到几种切入点,几种框架,甚至连需要读哪些文献都帮你想好了......
扫描二维码
获取学术大咖科研指导
(文末有福利)
文末福利
大模型相关的内容之所以那么火,与其相结合的技术原理绝对不容忽视,为了能让大家更能进一步了解时下大模型相关前沿热点,我们特邀QS前50博导、大厂算法研究员等多位大牛打造了大模型系列课程,附论文代码讲解,原价666元,限时免费领!
立即扫码
免费领100节计算机必学课程
-END-