到了 1965 年左右, 我们开始对所有这些发展以及它们彼此间的关联有了一些更现代的理解。 人们意识到强相互作用必定有一个破缺的 SU(2)×SU(2) 对称性, 包含了普通的同位旋变换及对核子左右旋部分具有相反作用的手征同位旋变换。 与我及其他人曾经以为的不同的是, 这种破缺的对称性在实验上并不表现为普通的近似对称性。 如果一个严格的对称性自发破缺, 其效应将出现在对无质量 Goldstone 玻色子 - 对于 SU(2)×SU(2) 来说即 π 介子 - 的低能相互作用的预言上。 Goldberger-Treiman 公式就是有关 “软 π 介子” 的公式中的一个, 它应该被理解为是关于零动量下 π 介子-核子耦合的公式。 当然 SU(2)×SU(2) 只是强相互作用下的近似对称性, 因此 π 介子不是无质量粒子, 而是我后来称之为 “赝 Goldstone 玻色子” 的质量特别小的粒子。
用这种观点人们可以计算一些与电弱相互作用、半轻子矢量及轴矢量流无关, 而只与强相互作用有关的东西。自 1965 年起,Tomozawa 和我独立计算了 π 介子-核子散射长度,我并计算了 π−π 散射长度。由于这些过程含有不止一个软 π 介子,因此 SU(2)×SU(2) 对称性对于计算结果至关重要。这些工作有着双重的影响。影响之一是它倾向于结束强相互作用S矩阵理论的生命,因为S矩阵哲学虽没什么错误,但其实际应用有赖于低能 π−π 相互作用很强这一前提,而这些新的计算表明那种相互作用在低能下实际上是很弱的。这些工作在一段时间里还倾向于削弱人们对 Higgs, Brout 及 Englert 所做的东西的兴趣,我们不再希望除掉那些可恶的 Goldstone 玻色子了 (Higgs 曾希望除掉它们),因为现在 π 介子被证认为了 Goldstone 玻色子,或很接近于 Goldstone 玻色子。