Upsonic ai agent项目学习心得

Upsonic ai agent框架学习心得

学习目标:

  • 掌握Upsonic主要流程

学习内容:

  1. Upsonic项目主要源代码

学习时间:

2025-03-15 10:00-15:00


学习产出:

  • 学习心得

心得总结如下:

Upsonic 极大的降低了搭建AI agent的使用门槛,其优秀的代码结构直观易懂,对个人掌握Agent相关知识、运行流程帮助很大。

1. 整体架构

Upsonic offers a cutting-edge enterprise-ready framework where you can orchestrate LLM calls, agents, and computer use to complete tasks cost-effectively. It provides more reliable agents, scalability, and a task-oriented structure that you need while completing real-world cases.
。

2. AI agent执行主要流程

在这里插入图片描述

   流程说明:
    - 创建Graph,一个Graph由TaskChain、TaskNode、决策节点DecisionLLM/DecisionFunc、运行状态State组成
    - 顺序执行Graph,将待执行节点放到execution_queue中
    - 每次执行时POP出队节点node,针对node节点类型进行不同的处理
    - 如果是TaskNode则直接_execute_task,并将执行结果输出存在运行状态state中
    - 如果是DecisionLLM,则生成decision prompt并调用llm,大模型决定执行哪个分支;如果是DecisionFunc则本地执行func,由执行结果决定执行哪个分支。根据分支类型将分支对应的TaskNode、TaskChain中的TaskNode、另外一个DecisionLLM、DecisionFunc 添加到队列头

TaskNode执行流程在这里插入图片描述

   流程说明:
	- 根据task配置agent、或graph默认agent、或已运行节点的agent获取runner
	- runner可以分为Direct和AgentConfiguration两种,都需要get_or_create_client获取UpsonicClient. Direct获取的是level one的Call client,而AgentConfiguration获取的是Agent client或MultiAgent client
	- 获取到UpsonicClient后直接调用call就可以拿到返回结果response
	- 基于ReliabilityProcessor再对response进行处理,提高结果的准确性

给出的准确性指标如下:
在这里插入图片描述
Client call执行流程
在这里插入图片描述

   流程说明:
	- client 发起http call请求level one server 或 level two server
	- Upsonic server根据请求参数,llm_model、tools、prompt、system_prompt等统一调用agent_creator创建Pydantic Agent. 创建Pydantic Agent时会根据llm_model选择对应的Model类型如OpenAiModel、AnthropicModel、AsyncAnthropicBedrock。如果传了tools参数,则会发起http请求tool server,拿到tools列表,并进行名称匹配。对匹配的tool创建动态函数,并进行wrap形成Callable,最后通过Pydantic tool plain传入Agent. Pydantic ai执行调用tool时,会调用此Callable函数,并间接通过http call_tool调用tool server.
	- 获取到Pydantic Agent后直接调用run就可以得到结果result,对result进行拆封装成UpsonicClient需要的格式

.

写在最后

现在各种AI agent框架层出不穷,五花八门,但是底层原理不是特别复杂的技术,本质上还是一些API的封装和编排。不用刻意将每种agent框架都用一遍,仅需将一个Agent框架执行过程掌握清楚即可。通过对Upsonic项目的学习,个人对Agent的认知又更加深了,相信今后工作中Agent的应用场景会越来越多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

baidu_26507163

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值