Problem Description
When wake up, lxhgww find himself in a huge maze.
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.
Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room).
What is the expect number of tunnels he go through before he find the exit?
Input
First line is an integer T (T ≤ 30), the number of test cases.
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.
Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.
Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
Sample Input
3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60
Sample Output
Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522
题意:迷宫中有N个房间,一个人先开始在房间1。有N-1条通道连接这些房间。在每个房间,有ki的概率会被杀死并回到房间1,有ei的概率发现密道逃出这个迷宫,一个房间到与他联通的任意房间的概率是均等的。问逃出迷宫时经过房间的次数期望。
递推思路参考:http://blog.csdn.net/xingyeyongheng/article/details/25506001
#include <cstring>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
using namespace std;
const double eps=1e-9;
struct node
{
double a,b,c;
double k,e;
}r[10005];
vector<int> son[10005];
int vis[10005];
void dfs(int s)
{
vis[s]=1;
int flag=0;
double suma=0;
double sumb=0;
double sumc=0;
int m=(int)son[s].size();
for(int i=0;i<m;i++)
{
if(vis[son[s][i]]==0)
{
dfs(son[s][i]);
suma+=r[son[s][i]].a;
sumb+=r[son[s][i]].b;
sumc+=r[son[s][i]].c;
flag=1;
}
}
if(flag==0)
{
r[s].a=r[s].k;
r[s].b=1-r[s].k-r[s].e;
r[s].c=1-r[s].k-r[s].e;
}
else
{
r[s].a=(r[s].k+(1-r[s].k-r[s].e)/m*suma)/(1-(1-r[s].k-r[s].e)/m*sumb);
r[s].b=(1-r[s].k-r[s].e)/m/(1-(1-r[s].k-r[s].e)/m*sumb);
r[s].c=(1-r[s].k-r[s].e+(1-r[s].k-r[s].e)/m*sumc)
/(1-(1-r[s].k-r[s].e)/m*sumb);
}
}
int main()
{
int t;
scanf("%d",&t);
int cas=1;
while(t--)
{
int n;
scanf("%d",&n);
for(int i=0;i<=n;i++)
{
son[i].clear();
vis[i]=0;
}
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
son[x].push_back(y);
son[y].push_back(x);
}
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&r[i].k,&r[i].e);
r[i].k/=100;
r[i].e/=100;
}
dfs(1);
if(fabs(r[1].a-1)<eps)printf("Case %d: impossible\n",cas++);
else printf("Case %d: %.6lf\n",cas++,r[1].c/(1-r[1].a));
}
return 0;
}